Do you want to publish a course? Click here

Missing Molecular Hydrogen and the Physical Conditions of GRB Host Galaxies

108   0   0.0 ( 0 )
 Added by Jason X. Prochaska
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the abundance of molecular hydrogen (H2) in the spectra of gamma ray burst afterglows (GRBs). In nearby galaxies H2 traces the cold neutral medium (CNM) and dense molecular star-forming interstellar gas. Though H2 is detected in at least half of all sightlines towards hot stars in the Magellanic Clouds and in ~25% of damped Lya systems toward quasars, it is not detected in any of the five GRB environments with a similar range of neutral hydrogen column and metallicity. We detect no vibrationally-excited H2 that would imply the GRB itself has photodissociated its parent molecular cloud, so such models are ruled out unless the parent cloud was <~4 pc in radius and was fully dissociated prior to the spectroscopic observations, or the star escaped its parent cloud during its main-sequence lifetime. The low molecular fractions for the GRBs are mysterious in light their large column densities of neutral H and expectations based on local analogs, i.e. 30 Doradus in the LMC. This surprising lack of H2 in GRB-DLAs indicates that the destruction processes that suppress molecule formation in the LMC and SMC are more effective in the GRB hosts, most probably a combination of low metallicity and an FUV radiation field 10--100 times the Galactic mean field. These inferred conditions place strong constraints on the star forming regions in these early galaxies.



rate research

Read More

78 - K. Wiersema , A. Togi , D. Watson 2018
Molecular species, most frequently H_2, are present in a small, but growing, number of gamma-ray burst (GRB) afterglow spectra at redshifts z~2-3, detected through their rest-frame UV absorption lines. In rare cases, lines of vibrationally excited states of H_2 can be detected in the same spectra. The connection between afterglow line-of-sight absorption properties of molecular (and atomic) gas, and the observed behaviour in emission of similar sources at low redshift, is an important test of the suitability of GRB afterglows as general probes of conditions in star formation regions at high redshift. Recently, emission lines of carbon monoxide have been detected in a small sample of GRB host galaxies, at sub-mm wavelengths, but no searches for H_2 in emission have been reported yet. In this paper we perform an exploratory search for rest-frame K band rotation-vibrational transitions of H_2 in emission, observable only in the lowest redshift GRB hosts (z<0.22). Searching the data of four host galaxies, we detect a single significant rotation-vibrational H_2 line candidate, in the host of GRB 031203. Re-analysis of Spitzer mid-infrared spectra of the same GRB host gives a single low significance rotational line candidate. The (limits on) line flux ratios are consistent with those of blue compact dwarf galaxies in the literature. New instrumentation, in particular on the JWST and the ELT, can facilitate a major increase in our understanding of the H_2 properties of nearby GRB hosts, and the relation to H_2 absorption in GRBs at higher redshift.
57 - S.G. Djorgovski 2001
Observations of GRB host galaxies and their environments in general can provide valuable clues about the nature of progenitors. Bursts are associated with faint, <R> ~ 25 mag, galaxies at cosmological redshifts, <z> ~ 1. The host galaxies span a range of luminosities and morphologies, and appear to be broadly typical for the normal, evolving, actively star-forming galaxy populations at comparable redshifts and magnitudes, but may have somewhat elevated SFR per unit luminosity. There are also spectroscopic hints of massive star formation, from the ratios of [Ne III] and [O II] lines. The observed, unobscured star formation rates are typically a few M_sun/yr, but a considerable fraction of the total star formation in the hosts may be obscured by dust. A census of detected optical afterglows provides a powerful new handle on the obscured fraction of star formation in the universe; the current results suggest that at most a half of the massive star formation was hidden by dust.
64 - L.K. Hunt , A. Weiss , C. Henkel 2017
Studying the molecular component of the interstellar medium in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Zsun ~ 0.3), two detections of 13CO isotopologues and atomic carbon, [CI](1-0), and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 ~ R31 ~ 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin<=20 K), dense (H2 volume density nH2 >= $10^6$ cm$^{-3}$), with moderate CO column density (NCO ~ $10^{16}$ cm$^{-2}$) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low (~ 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13C enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [CI](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO.
254 - P.Schady , T.Kruehler (1 2010
There is considerable discrepancy between the amount of X-ray absorption and that inferred from optical (rest frame UV) as measured along gamma-ray burst (GRB) sight lines, with the former being typically an order of magnitude higher than what would be expected from the measurement of neutral element species via optical absorption line spectroscopy. We explore this missing gas problem by using X-ray and optical measurements in a sample of 29 z=0.7-6.3 GRBs from both spectroscopic data and the afterglow broadband spectral energy distributions. The low ionisation species detected in the UV are associated with the neutral interstellar medium in the GRB host galaxy, while soft X-ray absorption, which is weakly dependent on the ionisation state of the gas, provides a probe of the total column of gas along the sight line. After careful consideration of any systematic effects, we find that the neutral gas consists of less than ~10% of the total gas, and this limit decreases with the more ionised that the X-ray absorbing gas is, which in our spectral fits is assumed to be neutral. Only a very small fraction of this ionised gas, however, is detected in UV absorption lines with ionisation potentials up to ~200eV (i.e. SiIV, CIV, NV, OVI), which leaves us to postulate that the X-ray excess is due to ultra-highly-ionised, dense gas in the GRB vicinity.
We report the detections of molecular hydrogen (H$_2$), vibrationally-excited H$_2$ (H$^*_2$), and neutral atomic carbon (CI), in two new afterglow spectra of GRBs,181020A ($z=2.938$) and 190114A ($z=3.376$), observed with X-shooter at the Very Large Telescope (VLT). Both host-galaxy absorption systems are characterized by strong damped Lyman-$alpha$ absorbers (DLAs) and substantial amounts of molecular hydrogen with $log N$(HI, H$_2$) = $22.20pm 0.05,~20.40pm 0.04$ (GRB,181020A) and $log N$(HI, H$_2$) = $22.15pm 0.05,~19.44pm 0.04$ (GRB,190114A). The DLA metallicites, depletion levels and dust extinctions are [Zn/H] = $-1.57pm 0.06$, [Zn/Fe] = $0.67pm 0.03$, and $A_V = 0.27pm 0.02$,mag (GRB,181020A) and [Zn/H] = $-1.23pm 0.07$, [Zn/Fe] = $1.06pm 0.08$, and $A_V = 0.36pm 0.02$,mag (GRB,190114A). We then examine the molecular gas content of all known H$_2$-bearing GRB-DLAs and explore the physical conditions and characteristics of these systems. We confirm that H$_2$ is detected in all CI- and H$^*_2$-bearing GRB absorption systems, but that these rarer features are not necessarily detected in all GRB H$_2$ absorbers. We find that a large molecular fraction of $f_{rm H_2} gtrsim 10^{-3}$ is required for CI to be detected. The defining characteristic for H$^*_2$ to be present is less clear, though a large H$_2$ column density is an essential factor. We then derive the H$_2$ excitation temperatures of the molecular gas and find that they are relatively low with $T_{rm ex} approx 100 - 300$,K, however, there could be evidence of warmer components populating the high-$J$ H$_2$ levels in GRBs,181020A and 190114A. Finally, we demonstrate that the otherwise successful X-shooter GRB afterglow campaign is hampered by a significant dust bias excluding the most dust-obscured H$_2$ absorbers from identification [Abridged].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا