Do you want to publish a course? Click here

Physical conditions of the molecular gas in metal-poor galaxies

65   0   0.0 ( 0 )
 Added by Leslie Hunt
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studying the molecular component of the interstellar medium in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Zsun ~ 0.3), two detections of 13CO isotopologues and atomic carbon, [CI](1-0), and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 ~ R31 ~ 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin<=20 K), dense (H2 volume density nH2 >= $10^6$ cm$^{-3}$), with moderate CO column density (NCO ~ $10^{16}$ cm$^{-2}$) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low (~ 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13C enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [CI](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO.



rate research

Read More

We describe a next major frontier in observational studies of galaxy evolution and star formation: linking the physical conditions in the cold, star-forming interstellar medium to host galaxy and local environment. The integrated gas content of galaxies has been surveyed extensively over the last decades. The link between environment and cold gas density, turbulence, excitation, dynamical state, and chemical makeup remain far less well understood. We know that these properties do vary dramatically and theoretical work posits a strong connection between the state of the gas, its ability to form stars, and the impact of stellar feedback. A next major step in the field will be to use sensitive cm-, mm-, and submm-wave spectroscopy and high resolution spectroscopic imaging to survey the state of cold gas across the whole local galaxy population. Such observations have pushed the capabilities of the current generation of telescopes. We highlight three critical elements for progress in the next decade: (1) robust support and aggressive development of ALMA, (2) the deployment of very large heterodyne receiver arrays on single dish telescopes, and (3) development of a new interferometric array that dramatically improves on current capabilities at cm- and mm-wavelengths (~ 1-115 GHz).
106 - J. Kamenetzky , G. C. Privon , 2018
Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature, density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4-3 through J = 13-12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to non-thermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the best-case scenario of a fully sampled SLED through J = 10-9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.
Tracing molecular hydrogen content with carbon monoxide in low-metallicity galaxies has been exceedingly difficult. Here we present a new effort, with IRAM 30-m observations of 12CO(1-0) of a sample of 8 dwarf galaxies having oxygen abundances ranging from 12+logO/H=7.7 to 8.4. CO emission is detected in all galaxies, including the most metal-poor galaxy of our sample (0.1 Zsun); to our knowledge this is the largest number of 12CO(1-0) detections ever reported for galaxies with 12+logO/H<=8 (0.2 Zsun) outside the Local Group. We calculate stellar masses (Mstar) and star-formation rates (SFRs), and analyze our results by combining our observations with galaxy samples from the literature. Extending previous results for a correlation of the molecular gas depletion time, tau(dep), with Mstar and specific SFR (sSFR), we find a variation in tau(dep) of a factor of 200 or more (from <50 Myr to 10 Gyr) over a spread of 1000 in sSFR and Mstar. We exploit the variation of tau(dep) to constrain the CO-to-H2 mass conversion factor alpha(CO) at low metallicity, and assuming a power-law variation find alpha(CO) propto (Z/Zsun)^1.9, similar to results based on dust continuum measurements compared with gas mass. By including HI measurements, we show that the fraction of total gas mass relative to the baryonic mass is higher in galaxies that are metal poor, of low mass, and of high sSFR. Finally, comparisons of the data with star-formation models of the molecular gas phases suggest that, at metallicities Z/Zsun<=0.2, there are some discrepancies with model predictions.
We investigate the molecular gas properties of galaxies across the main sequence of star-forming (SF) galaxies in the local Universe using $^{12}$CO($J=1-0$) (hereafter $^{12}$CO) and $^{13}$CO($J=1-0$) ($^{13}$CO) mapping data of 147 nearby galaxies obtained in the COMING project, a legacy project of the Nobeyama Radio Observatory. In order to improve signal-to-noise ratios of both lines, we stack all the pixels where $^{12}$CO emission is detected after aligning the line center expected from the first-moment map of $^{12}$CO. As a result, $^{13}$CO emission is successfully detected in 80 galaxies with a signal-to-noise ratio larger than three. The error-weighted mean of integrated-intensity ratio of $^{12}$CO to $^{13}$CO lines ($R_{1213}$) of the 80 galaxies is $10.9$ with a standard deviation of $7.0$. We find that (1) $R_{1213}$ positively correlates to specific star-formation rate (sSFR) with a correlation coefficient of $0.46$, and (2) both flux ratio of IRAS 60~$mu$m to 100~$mu$m ($f_{60}/f_{100}$) and inclination-corrected linewidth of $^{12}$CO stacked spectra ($sigma_{{rm ^{12}CO},i}$) also correlate with sSFR for galaxies with the $R_{1213}$ measurement. Our results support the scenario where $R_{1213}$ variation is mainly caused by the changes in molecular-gas properties such as temperature and turbulence. The consequent variation of CO-to-H$_2$ conversion factor across the SF main sequence is not large enough to completely extinguish the known correlations between sSFR and $M_{rm mol}/M_{rm star}$ ($mu_{rm mol}$) or star-formation efficiency (SFE) reported in previous studies, while this variation would strengthen (weaken) the sSFR-SFE (sSFR-$mu_{rm mol}$) correlation.
We report results from a large molecular line survey of Luminous Infrared Galaxies (L_{IR} >= 10^{11} L_sol) in the local Universe (z<=0.1), conducted during the last decade with the James Clerk Maxwell Telescope (JCMT) and the IRAM 30-m telescope. This work presents the CO and {13}CO line data for 36 galaxies, further augmented by multi-J total CO luminosities available for other IR-bright galaxies from the literature. This yields a sample of N=70 galaxies with the star-formation (SF) powered fraction of their IR luminosities spanning L_{IR} (10^{10}-2x10^{12}) L_sol and a wide range of morphologies. Simple comparisons of their available CO Spectral Line Energy Distributions (SLEDs) with local ones, as well as radiative transfer models discern a surprisingly wide range of average ISM conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (T_{kin}>=100 K) and dense (n>=10^4 cm^{-3}) gas phase, involving galaxy-sized (~(few)x10^9 M_sol) gas mass reservoirs under conditions that would otherwise amount only ~1% of mass per typical SF molecular cloud in the Galaxy. Some of the highest excitation CO SLEDs are found in the so-called Ultra Luminous Infrared Galaxies and seem irreducible to ensembles of ordinary SF-powered regions. Highly supersonic turbulence and high cosmic ray (CR) energy densities rather than far-UV/optical photons or SNR-induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation.....
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا