Do you want to publish a course? Click here

Chemistry in disks I - Deep search for N$_2$H$^+$ in the protoplanetary disks around LkCa 15, MWC 480, and DM Tau

109   0   0.0 ( 0 )
 Added by Anne Dutrey
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: To constrain the ionization fraction in protoplanetary disks, we present new high-sensitivity interferometric observations of N$_2$H$^+$ in three disks surrounding DM Tau, LkCa 15, and MWC 480. Methods: We used the IRAM PdBI array to observe the N$_2$H$^+$ J=1-0 line and applied a $chi^2$-minimization technique to estimate corresponding column densities. These values are compared, together with HCO$^+$ column densities, to results of a steady-state disk model with a vertical temperature gradient coupled to gas-grain chemistry. Results: We report two dhp detections for LkCa 15 and DM Tau at the $5 sigma$ level and an upper limit for MWC 480. The column density derived from the data for LkCa 15 is much lower than previously reported. The [N$_2$H$^+$/HCO$^+$] ratio is on the order of 0.02--0.03. So far, HCO$^+$ remains the most abundant observed molecular ion in disks. Conclusions: All the observed values generally agree with the modelled column densities of disks at an evolutionary stage of a few million years (within the uncertainty limits), but the radial distribution of the molecules is not reproduced well. The low inferred concentration of N$_2$H$^+$ in three disks around low-mass and intermediate-mass young stars implies that this ion is not a sensitive tracer of the overall disk ionization fraction.



rate research

Read More

203 - Th. Henning 2010
We studied several representative circumstellar disks surrounding the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau at (sub-)millimeter wavelengths in lines of CCH. Our aim is to characterize photochemistry in the heavily UV-irradiated MWC 480 disk and compare the results to the disks around cooler T Tauri stars. We detected and mapped CCH in these disks with the IRAM Plateau de Bure Interferome- ter in the C- and D-configurations in the (1-0) and (2-1) transitions. Using an iterative minimization technique, the CCH column densities and excitation conditions are con- strained. Very low excitation temperatures are derived for the T Tauri stars. These values are compared with the results of advanced chemical modeling, which is based on a steady-state flared disk structure with a vertical temperature gradient, and a gas- grain chemical network with surface reactions. Both model and observations suggest that CCH is a sensitive tracer of the X-ray and UV irradiation. The predicted radial dependency and source to source variations of CCH column densities qualitatively agree with the observed values, but the predicted column densities are too low by a factor of several. The chemical model fails to reproduce high concentrations of CCH in very cold disk midplane as derived from the observed low excitation condition for both the (1-0) and (2-1) transitions.
We study the content in S-bearing molecules of protoplanetary disks around low-mass stars. We used the new IRAM 30-m receiver EMIR to perform simultaneous observations of the $1_{10}-1_{01}$ line of H$_2$S at 168.8 GHz and $2_{23}-1_{12}$ line of SO at 99.3 GHz. We compared the observational results with predictions coming from the astrochemical code NAUTILUS, which has been adapted to protoplanetary disks. The data were analyzed together with existing CS J=3-2 observations. We fail to detect the SO and H$_2$S lines, although CS is detected in LkCa15, DM,Tau, and GO,Tau but not in MWC,480. However, our new upper limits are significantly better than previous ones and allow us to put some interesting constraints on the sulfur chemistry. Our best modeling of disks is obtained for a C/O ratio of 1.2, starting from initial cloud conditions of H density of $2times 10^5$ cm$^{-3}$ and age of $10^6$ yr. The results agree with the CS data and are compatible with the SO upper limits, but fail to reproduce the H$_2$S upper limits. The predicted H$_2$S column densities are too high by at least one order of magnitude. H$_2$S may remain locked onto grain surfaces and react with other species, thereby preventing the desorption of H$_2$S.
We present Karl G. Jansky Very Large Array (VLA) observations of the 7 mm continuum emission from the disk surrounding the young star LkCa 15. The observations achieve an angular resolution of 70 mas and spatially resolve the circumstellar emission on a spatial scale of 9 AU. The continuum emission traces a dusty annulus of 45 AU in radius that is consistent with the dust morphology observed at shorter wavelengths. The VLA observations also reveal a compact source at the center of the disk, possibly due to thermal emission from hot dust or ionized gas located within a few AU from the central star. No emission is observed between the star and the dusty ring, and, in particular, at the position of the candidate protoplanet LkCa 15 b. By comparing the observations with theoretical models for circumplanetary disk emission, we find that if LkCa~15~b is a massive planet (>5 M_J) accreting at a rate greater than 1.e-6 M_J yr^{-1}, then its circumplanetary disk is less massive than 0.1 M_J, or smaller than 0.4 Hill radii. Similar constraints are derived for any possible circumplanetary disk orbiting within 45 AU from the central star. The mass estimate are uncertain by at least one order of magnitude due to the uncertainties on the mass opacity. Future ALMA observations of this system might be able to detect circumplanetary disks down to a mass of 5.e-4 M_J and as small as 0.2 AU, providing crucial constraints on the presence of giant planets in the act of forming around this young star.
H$_2$CO ice on dust grains is an important precursor of complex organic molecules (COMs). H$_2$CO gas can be readily observed in protoplanetary disks and may be used to trace COM chemistry. However, its utility as a COM probe is currently limited by a lack of constraints on the relative contributions of two different formation pathways: on icy grain-surfaces and in the gas-phase. We use archival ALMA observations of the resolved distribution of H$_2$CO emission in the disk around the young low-mass star DM Tau to assess the relative importance of these formation routes. The observed H$_2$CO emission has a centrally peaked and radially broad brightness profile (extending out to 500 AU). We compare these observations with disk chemistry models with and without grain-surface formation reactions, and find that both gas and grain-surface chemistry are necessary to explain the spatial distribution of the emission. Gas-phase H$_2$CO production is responsible for the observed central peak, while grain-surface chemistry is required to reproduce the emission exterior to the CO snowline (where H$_2$CO mainly forms through the hydrogenation of CO ice before being non-thermally desorbed). These observations demonstrate that both gas and grain-surface pathways contribute to the observed H$_2$CO in disks, and that their relative contributions depend strongly on distance from the host star.
128 - S. Facchini , M. Benisty , J. Bae 2020
We present high resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and J1610. These disks host dust-depleted inner regions, possibly carved by massive planets, and are of prime interest to study the imprints of planet-disk interactions. While at moderate angular resolution they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60$times$40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~$7,mu$Jy beam$^{-1}$ rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host 3 and 2 narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We perform hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note however that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals and possibly second generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few $M_{rm Jup}$), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms being at the origin of the observed substructures, in particular with narrow rings generated at the edge of the CO and N$_2$ snowlines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا