Do you want to publish a course? Click here

Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines

114   0   0.0 ( 0 )
 Added by Sylvestre Lacour
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present column density measurements of the HD molecule in the interstellar gas toward 17 Galactic stars. The values for the seven most heavily reddened sightlines, with E(B-V) = 0.38-0.72, are derived from observations with the Far Ultraviolet Spectroscopic Explorer (FUSE). The other ten values are from a reanalysis of spectra obtained with Copernicus. In all cases, high-resolution ground-based observations of KI and/or the CH molecule were used to constrain the gas velocity structure and to correct for saturation effects. Comparisons of the column densities HD, CH, CN, and KI in these 17 sightlines indicate that HD is most tightly correlated with CH. Stringent lower limits to the interstellar D/H ratio, derived from the HD/2H2 ratio, range from 3.7 10^(-7) to 4.3 10^(-6). Our results also suggest that the HD/H2 ratio increases with the molecular fraction f(H2) and that the interstellar D/H ratio might be obtained from HD by probing clouds with f(H2) = 1. Finally, we note an apparent relationship between the molecular fractions of hydrogen and deuterium.



rate research

Read More

123 - Ningyu Tang , Di Li , Carl Heiles 2017
We have obtained OH spectra of four transitions in the $^2Pi_{3/2}$ ground state, at 1612, 1665, 1667, and 1720 MHz, toward 51 sightlines that were observed in the Herschel project Galactic Observations of Terahertz C+. The observations cover the longitude range of (32$^circ$, 64$^circ$) and (189$^circ$, 207$^circ$) in the northern Galactic plane. All of the diffuse OH emissions conform to the so-called Sum Rule of the four brightness temperatures, indicating optically thin emission condition for OH from diffuse clouds in the Galactic plane. The column densities of the HI `halos N(HI) surrounding molecular clouds increase monotonically with OH column density, N(OH), until saturating when N(HI)=1.0 x 10$^{21}$ cm$^{-2}$ and N (OH) $geq 4.5times 10^{15}$ cm$^{-2}$, indicating the presence of molecular gas that cannot be traced by HI. Such a linear correlation, albeit weak, is suggestive of HI halos contribution to the UV shielding required for molecular formation. About 18% of OH clouds have no associated CO emission (CO-dark) at a sensitivity of 0.07 K but are associated with C$^+$ emission. A weak correlation exists between C$^+$ intensity and OH column density for CO-dark molecular clouds. These results imply that OH seems to be a better tracer of molecular gas than CO in diffuse molecular regions.
108 - T. R. Geballe , T. Oka 2009
Until now the known sources in the Galactic center with sufficiently smooth spectra and of sufficient brightness to be suitable for high resolution infrared absorption spectroscopy of interstellar gas occupied a narrow range of longitudes, from the central cluster of hot stars to approximately 30 pc east of the center. In order to more fully characterize the gas within the r ~ 180 pc central molecular zone it is necessary to find additional such sources that cover a much wider longitudinal range. We are in the process of identifying luminous dust-embedded objects suitable for spectroscopy within 1.2 deg in longitude and 0.1 deg in latitude of Sgr A* using the Spitzer GLIMPSE and the 2MASS catalogues. Here we present spectra of H3+ and CO towards two such objects, one located 140 pc west of Sgr A*, and the other located on a line of sight to the Sgr B molecular cloud complex 85 pc to the east of Sgr A*. The sightline to the west passes through two dense clouds of unusually high negative velocities and also appears to sample a portion of the expanding molecular ring. The spectra toward Sgr B reveal at least ten absorption components covering over 200 km/s and by far the largest equivalent width ever observed in an interstellar H3+line; they appear to provide the first near-infrared view into that hotbed of star formation.
We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the second half of the survey involving 15 lines of sight to supplement data for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, $R_V$ = $A_V$ / $E(B-V)$ -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions ($f_{rm H2}$). In the lines of sight with large $R_V$, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H$_2$ formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, $N$(H$_{rm tot}$)/$E(B-V)$, based on direct measurements of $N$(H$_2$) and $N$(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic translucent clouds with $f_{rm H2}$ $sim$ 1.
The precise characteristics of clouds and the nature of dust in the diffuse interstellar medium can only be extracted by inspecting the rare cases of single-cloud sightlines. In our nomenclature such objects are identified by interstellar lines, such as K I, that show at a resolving power of $lambda /Delta lambda sim 75,000$ one dominating Doppler component that accounts for more than half of the observed column density. We searched for such sightlines using high-resolution spectroscopy towards reddened OB stars for which far-UV extinction curves are known. We compiled a sample of 186 spectra, 100 of which were obtained specifically for this project with UVES. In our sample we identified 65 single-cloud sightlines, about half of which were previously unknown. We used the CH/CH$^+$ line ratio of our targets to establish whether the sightlines are dominated by warm or cold clouds. We found that CN is detected in all cold (CH/CH$^+ >1$) clouds, but is frequently absent in warm clouds. We inspected the WISE ($3-22, mu$m) observed emission morphology around our sightlines and excluded a circumstellar nature for the observed dust extinction. We found that most sightlines are dominated by cold clouds that are located far away from the heating source. For 132 stars, we derived the spectral type and the associated spectral type-luminosity distance. We also applied the interstellar Ca II distance scale, and compared these two distance estimates with GAIA parallaxes. These distance estimates scatter by 40%. By comparing spectral type-luminosity distances with those of GAIA, we detected a hidden dust component that amounts to a few mag of extinction for eight sightlines. This Dark Dust is populated by $ge 1 mu$m large grains and predominately appears in the field of the cold interstellar medium.
89 - S. Mishra 2017
It is widely believed that the cool gas clouds traced by MgII absorption, within a velocity offset of 5000 km/s relative to the background quasar are mostly associated with the quasar itself, whereas the absorbers seen at larger velocity offsets towards us are intervening absorber systems and hence their existence is completely independent of the background quasar. Recent evidence by Bergeron et al. (2011, hereinafter BBM) has seriously questioned this paradigm, by showing that the number density of intervening MgII absorbers towards the 45 blazars in their sample is nearly 2 times the expectation based on the MgII absorption systems seen towards normal QSOs. Given its serious implications, it becomes important to revisit this finding, by enlarging the blazar sample and subjecting it to an independent analysis. Here, we first report the outcome of our re-analysis of the available spectroscopic data for the BBM sample itself. Our analysis of the BBM sample reproduces their claimed factor of 2 excess of dN/dz along blazar sightlines, vis-a-vis normal QSOs. We have also assembled a ~3 times larger sample of blazars, albeit with moderately sensitive optical spectra. Using this sample together with the BBM sample, our analysis shows that the dN/dz of the MgII absorbers statistically matches that known for normal QSO sightlines. Further, the analysis indicates that associated absorbers might be contributing significantly to the estimated dN/dz upto offset speeds Delta v ~0.2c relative to the blazar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا