Do you want to publish a course? Click here

Molecular Hydrogen in the FUSE Translucent Lines of Sight: The Full Sample

131   0   0.0 ( 0 )
 Added by Brian L. Rachford
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the second half of the survey involving 15 lines of sight to supplement data for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, $R_V$ = $A_V$ / $E(B-V)$ -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions ($f_{rm H2}$). In the lines of sight with large $R_V$, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H$_2$ formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, $N$(H$_{rm tot}$)/$E(B-V)$, based on direct measurements of $N$(H$_2$) and $N$(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic translucent clouds with $f_{rm H2}$ $sim$ 1.



rate research

Read More

81 - C. Martin-Zaidi 2005
We present an analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of HD141569A, a transitional object known to possess a circumstellar disk. We observe two components of gas at widely different temperatures along the line of sight. We detect cold H2, which is thermalized up to J=2 at a kinetic temperature of 51K. Such low temperatures are typical of the diffuse interstellar medium. Since the line of sight to HD141569A does not pass through its disk, it appears that we are observing the cold H2 in a low extinction envelope associated with the high Galactic latitude dark cloud complex L134N, which is in the same direction and at nearly the same distance as HD141569A. The column densities of the higher J-levels of H2 suggest the presence of warm gas along the line of sight. The excitation conditions do not seem to be consistent with what is generally observed in diffuse interstellar clouds. The observed radial velocity of the gas implies that the UV spectral lines we observe are likely interstellar in origin rather than circumstellar, although our absorption line study does not definitely rule out the possibility that the warm gas is close to the star. The discovery of such warm gas along the line of sight may provide evidence for turbulent phenomena in the dark cloud L134N.
Using UV spectra obtained with FUSE, HST, and/or IUE, we determine interstellar column densities of 12CO, 13CO, and/or C_2 for ten Galactic sight lines with 0.37<E(B-V)<0.72. The N(CO)/N(H_2) ratio varies over a factor of 100 in this sample, due primarily to differences in N(CO). For a given N(H_2), published models of diffuse and translucent clouds predict less CO than is observed. The J=1-3 rotational levels of 12CO are sub-thermally populated in these sight lines, with T_ex typically between 3 and 7 K. In general, there is no significant difference between the excitation temperatures of 12CO and 13CO. Fits to the higher resolution CO line profiles suggest that CO (like CN) is concentrated in relatively cold, dense gas. We obtain C_2 column densities from the F-X (1-0) and (0-0) bands (1314 and 1341 A), the D-X (0-0) band (2313 A), and the A-X (3-0) and (2-0) bands (7719 and 8757 A). Comparisons among those N(C_2) yield a set of mutually consistent f-values for the UV and optical C_2 bands, but also reveal some apparent anomalies within the F-X (0-0) band. Both the kinetic temperature inferred from the C_2 rotational populations (up to J=18) and the excitation temperature T_02(C_2) are generally smaller than the corresponding T_01(H_2). Incorporating additional data for K I, HD, CH, C_2, C_3, CN, and CO from the literature (for a total sample of 74 sight lines), we find that (1) CO is most tightly correlated with CN; (2) the ratios 12CO/H_2 and 13CO/H_2 both are fairly tightly correlated with the density indicator CN/CH (but C_2/H_2 is not); and (3) the ratio 12CO/13CO is somewhat anti-correlated with both CN/CH and N(CO). Sight lines with 12CO/13CO below the average local Galactic value of 12C/13C appear to sample colder, denser gas in which isotope exchange reactions have enhanced 13CO, relative to 12CO.
Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse molecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, HI, must be known. We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Based on Jansky Very Large Array data, we employ the 21 cm HI absorption-line technique to construct profiles of the HI opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended HI emission to calculate the HI column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example.
The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues. We use absorption by optically thin transitions of c-C3H2 to estimate the N(H2), and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. We discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance; the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C:13C ratio, whereas H2CO/H2^13CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V.
We describe a moderate-resolution FUSE mini-survey of H2 in the Milky Way and Magellanic Clouds, using four hot stars and four AGN as background sources. FUSE spectra of nearly every stellar and extragalactic source exhibit numerous absorption lines from the H2 Lyman and Werner bands between 912 and 1120 A. One extragalactic sightline, PKS 2155-304, with low N(HI) shows no detectable H2 and could be the Lockman Hole of molecular gas, of importance for QSO absorption-line studies. We measure H2 column densities in low rotational states (J = 0 and 1) to derive rotational and/or kinetic temperatures of diffuse interstellar gas. The higher-J abundances can constrain models of the UV radiation fields and gas densities. In three optically thick clouds toward extragalactic sources, we find n(H) ~ 30-50 cm(-3) and cloud thicknesses of 2-3 pc. The rotational temperatures for H2 at high Galactic latitude, <T_01> = 107 +/- 17 K (seven sightlines) and 120 +/- 13 K (three optically thick clouds), are higher than those in the Copernicus sample composed primarily of targets in the disk. We find no evidence for great differences in the abundance or state of excitation of H2 between sight lines in the Galaxy and those in the SMC and LMC. In the future, we will probe the distribution and physical parameters of diffuse molecular gas in the disk and halo and in the lower-metallicity environs of the LMC and SMC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا