Do you want to publish a course? Click here

Dark Dust and single-cloud sightlines in the ISM

59   0   0.0 ( 0 )
 Added by Ralf Siebenmorgen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The precise characteristics of clouds and the nature of dust in the diffuse interstellar medium can only be extracted by inspecting the rare cases of single-cloud sightlines. In our nomenclature such objects are identified by interstellar lines, such as K I, that show at a resolving power of $lambda /Delta lambda sim 75,000$ one dominating Doppler component that accounts for more than half of the observed column density. We searched for such sightlines using high-resolution spectroscopy towards reddened OB stars for which far-UV extinction curves are known. We compiled a sample of 186 spectra, 100 of which were obtained specifically for this project with UVES. In our sample we identified 65 single-cloud sightlines, about half of which were previously unknown. We used the CH/CH$^+$ line ratio of our targets to establish whether the sightlines are dominated by warm or cold clouds. We found that CN is detected in all cold (CH/CH$^+ >1$) clouds, but is frequently absent in warm clouds. We inspected the WISE ($3-22, mu$m) observed emission morphology around our sightlines and excluded a circumstellar nature for the observed dust extinction. We found that most sightlines are dominated by cold clouds that are located far away from the heating source. For 132 stars, we derived the spectral type and the associated spectral type-luminosity distance. We also applied the interstellar Ca II distance scale, and compared these two distance estimates with GAIA parallaxes. These distance estimates scatter by 40%. By comparing spectral type-luminosity distances with those of GAIA, we detected a hidden dust component that amounts to a few mag of extinction for eight sightlines. This Dark Dust is populated by $ge 1 mu$m large grains and predominately appears in the field of the cold interstellar medium.



rate research

Read More

It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (> 6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
We compare the structure of molecular gas at $40$ pc resolution to the ability of gas to form stars across the disk of the spiral galaxy M51. We break the PAWS survey into $370$ pc and $1.1$ kpc resolution elements, and within each we estimate the molecular gas depletion time ($tau_{rm Dep}^{rm mol}$), the star formation efficiency per free fall time ($epsilon_{rm ff}$), and the mass-weighted cloud-scale (40 pc) properties of the molecular gas: surface density, $Sigma$, line width, $sigma$, and $bequivSigma/sigma^2proptoalpha_{rm vir}^{-1}$, a parameter that traces the boundedness of the gas. We show that the cloud-scale surface density appears to be a reasonable proxy for mean volume density. Applying this, we find a typical star formation efficiency per free-fall time, $epsilon_{ff} left( left< Sigma_{40pc} right> right) sim 0.3{-}0.36%$, lower than adopted in many models and found for local clouds. More, the efficiency per free fall time anti-correlates with both $Sigma$ and $sigma$, in some tension with turbulent star formation models. The best predictor of the rate of star formation per unit gas mass in our analysis is $b equiv Sigma / sigma^2$, tracing the strength of self gravity, with $tau_{rm Dep}^{rm mol} propto b^{-0.9}$. The sense of the correlation is that gas with stronger self-gravity (higher $b$) forms stars at a higher rate (low $tau_{rm Dep}^{rm mol}$). The different regions of the galaxy mostly overlap in $tau_{rm Dep}^{rm mol}$ as a function of $b$, so that low $b$ explains the surprisingly high $tau_{rm Dep}^{rm mol}$ found towards the inner spiral arms found by by Meidt et al. (2013).
Observations of interstellar dust are often used as a proxy for total gas column density $N_mathrm{H}$. By comparing $textit{Planck}$ thermal dust data (Release 1.2) and new dust reddening maps from Pan-STARRS 1 and 2MASS (Green et al. 2018), with accurate (opacity-corrected) HI column densities and newly-published OH data from the Arecibo Millennium survey and 21-SPONGE, we confirm linear correlations between dust optical depth $tau_{353}$, reddening $E(B{-}V)$ and the total proton column density $N_mathrm{H}$ in the range (1$-$30)$times$10$^{20}$cm$^{-2}$, along sightlines with no molecular gas detections in emission. We derive an $N_mathrm{H}$/$E(B{-}V)$ ratio of (9.4$pm$1.6)$times$10$^{21}$cm$^{-2}$mag$^{-1}$ for purely atomic sightlines at $|b|$$>$5$^{circ}$, which is 60$%$ higher than the canonical value of Bohlin et al. (1978). We report a $sim$40$%$ increase in opacity $sigma_{353}$=$tau_{353}$/$N_mathrm{H}$, when moving from the low column density ($N_mathrm{H}$$<$5$times$10$^{20}$cm$^{-2}$) to moderate column density ($N_mathrm{H}$$>$5$times$10$^{20}$cm$^{-2}$) regime, and suggest that this rise is due to the evolution of dust grains in the atomic ISM. Failure to account for HI opacity can cause an additional apparent rise in $sigma_{353}$, of the order of a further $sim$20$%$. We estimate molecular hydrogen column densities $N_{mathrm{H}_{2}}$ from our derived linear relations, and hence derive the OH/H$_2$ abundance ratio of $X_mathrm{OH}$$sim$1$times$10$^{-7}$ for all molecular sightlines. Our results show no evidence of systematic trends in OH abundance with $N_{mathrm{H}_{2}}$ in the range $N_{mathrm{H}_{2}}$$sim$(0.1$-$10)$times$10$^{21}$cm$^{-2}$. This suggests that OH may be used as a reliable proxy for H$_2$ in this range, which includes sightlines with both CO-dark and CO-bright gas.
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)
239 - M. Matsuura 2009
We report on an analysis of the gas and dust budget in the the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). Recent observations from the Spitzer Space Telescope enable us to study the mid-infrared dust excess of asymptotic giant branch (AGB) stars in the LMC. This is the first time we can quantitatively assess the gas and dust input from AGB stars over a complete galaxy, fully based on observations. The integrated mass-loss rate over all intermediate and high mass-loss rate carbon-rich AGB candidates in the LMC is 8.5x10^-3 solar mass per year, up to 2.1x10^-2 solar mass per year. This number could be increased up to 2.7x10^-2 solar mass per year, if oxygen-rich stars are included. This is overall consistent with theoretical expectations, considering the star formation rate when these low- and intermediate-mass stars where formed, and the initial mass functions. AGB stars are one of the most important gas sources in the LMC, with supernovae (SNe), which produces about 2-4x10^-2 solar mass per year. At the moment, the star formation rate exceeds the gas feedback from AGB stars and SNe in the LMC, and the current star formation depends on gas already present in the ISM. This suggests that as the gas in the ISM is exhausted, the star formation rate will eventually decline in the LMC, unless gas is supplied externally. Our estimates suggest `a missing dust-mass problem in the LMC, which is similarly found in high-z galaxies: the accumulated dust mass from AGB stars and possibly SNe over the dust life time (400--800 Myrs) is significant less than the dust mass in the ISM. Another dust source is required, possibly related to star-forming regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا