Do you want to publish a course? Click here

Characterizing Earth-like Planets with Terrestrial Planet Finder

114   0   0.0 ( 0 )
 Added by Sara Seager
 Publication date 2002
  fields Physics
and research's language is English
 Authors S. Seager




Ask ChatGPT about the research

For the first time in human history the possibility of detecting and studying Earth-like planets is on the horizon. Terrestrial Planet Finder (TPF), with a launch date in the 2015 timeframe, is being planned by NASA to find and characterize planets in the habitable zones of nearby stars. The mission Darwin from ESA has similar goals. The motivation for both of these space missions is the detection and spectroscopic characterization of extrasolar terrestrial planet atmospheres. Of special interest are atmospheric biomarkers--such as O2, O3, H2O, CO and CH4--which are either indicative of life as we know it, essential to life, or can provide clues to a planets habitability. A mission capable of measuring these spectral features would also obtain sufficient signal-to-noise to characterize other terrestrial planet properties. For example, physical characteristics such as temperature and planetary radius can be constrained from low- resolution spectra. In addition, planet characteristics such as weather, rotation rate, presence of large oceans or surface ice, and existence of seasons could be derived from photometric measurements of the planets variability. We will review the potential to characterize terrestrial planets beyond their spectral signatures. We will also discuss the possibility to detect strong surface biomarkers--such as Earths vegetation red edge near 700 nm--that are different from any known atomic, molecular, or mineralogical signature.



rate research

Read More

The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zones, which determine the compositions of Earth and Venus follow a particular pattern determined by Jupiter, while the feeding zones of Mars and Theia, the last giant impactor on Earth, appear to randomly sample the terrestrial disk. The late accreted mass samples the disk nearly evenly.
The Terrestrial Planet Finder Coronagraph (TPF-C) mission presented here is an existence proof for a flagship-class internal coronagraph space mission capable of detecting and characterizing Earth-like planets and planetary systems at visible wavelengths around nearby stars, using an existing launch vehicle. TPF-C will use spectroscopy to measure key properties of exoplanets including the presence of atmospheric water or oxygen, powerful signatures in the search for habitable worlds.
285 - L. Kaltenegger , W.A. Traub 2009
Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day Rosetta Stones for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telescope in space. We find that the signal to noise values for all important spectral features are on the order of unity or less per transit - except for the closest stars - making it difficult to detect such features in one single transit, and implying that co-adding of many transits will be essential.
60 - R. Gonsalves 2002
One of two approaches to implementing NASAs Terrestrial Planet Finder is to build a space telescope that utilizes the techniques of coronagraphy and apodization to suppress diffraction and image exo-planets. We present a method for calculation of a telescopes apodizer which suppresses the side lobes of the image of a star so as to optimally detect an Earth-like planet. Given the shape of a telescopes aperture and given a search region for a detector, we solve an integral equation to determine an amplitude modulation (an apodizer) which suppresses the stars energy in the focal plane search region. The method is quite general and yields as special cases the product apodizer reported by Nisenson and Papaliolios (2001) and the Prolate spheroidal apodizer of Kasdin et al (2002), and Aime et al (2002). We show computer simulations of the apodizers and the corresponding point spread functions for various aperture-detector configurations.
324 - Sean N. Raymond 2005
The final stage in the formation of terrestrial planets consists of the accumulation of ~1000-km ``planetary embryos and a swarm of billions of 1-10 km ``planetesimals. During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ~0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earths current water budget. We demonstrate several new aspects of the accretion process: 1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accreted for several millions of years. 2) Even in the absence of secular resonances, the asteroid belt is cleared of >99% of its original mass by self-scattering of bodies into resonances with Jupiter. 3) If planetary embryos form relatively slowly, following the models of Kokubo & Ida, then the formation of embryos in the asteroid belt may have been stunted by the presence of Jupiter. 4) Self-interacting planetesimals feel dynamical friction from other small bodies, which has important effects on the eccentricity evolution and outcome of a simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا