No Arabic abstract
Our VLA observations of the XMM-Newton/Chandra 13hr deep survey field (see Page et al., this proceedings) result in one of the two deepest 1.4GHz radio maps ever made. Within the 15 radius field covered by the deep X-ray data (0.19 sq deg), a total of 556 radio sources are detected, down to a 4 sigma flux limit of 28uJy. Of the 214 Chandra sources, 55 have radio counterparts. The sub-arcsecond accuracy of the VLA and Chandra positions enable us to determine with high confidence the sources common to both surveys. Here we present the relationship between the X-ray and radio source populations at the faintest radio flux limits yet probed by such a study. We discuss how the X-ray/radio relationship differs as a function of optical morphology, ie between unresolved `stellar objects and well resolved galaxies. We then discuss the origin of the X-ray and radio emission, ie AGN, starburst or a mixture of both, in these two classes of object.
Discerning the exact nature of the faint (sub-mJy) radio population has been historically difficult due to the low luminosity of these sources at most wavelengths. Using deep observations from Chandra/XMM-Newton/Spitzer and ground based follow up we are able to disentangle the AGN and star-forming populations for the first time in a deep multi-frequency GMRT/VLA/MERLIN Survey. The many diagnostics include radio luminosity, morphology, radio to mid-IR flux density ratios, radio to optical flux density ratios and radio spectral indices. Further diagnostics, e.g. optical spectra X-ray spectra/hardness ratios, IR colours indicate the presence of the AGN {em independent} of whether the radio emission is powered by AGN or star-formation. We are able to examine the star-formation history of the universe up to z=2.5 in a unique way based on an unbiased star-formation rate indicator, radio luminosity. This work provides an alternative perspective on the distribution of star-formation by mass, ``downsizing and allows us to examine the prevalence of AGN in star-bursts.
We present the results of a deep 610 MHz survey of the 1^H XMM/Chandra survey area with the GMRT. The resulting maps have a resolution of ~7 arcsec and an rms noise limit of 60 microJy. To a 5 sigma detection limit of 300 microJy we detect 223 sources within a survey area of diameter 64 arcmin. We compute the 610 MHz source counts and compare them to those measured at other radio wavelengths. The well know flattening of the Euclidean-normalised 1.4 GHz source counts below ~2 mJy, usually explained by a population of starburst galaxies undergoing luminosity evolution, is seen at 610 MHz. The 610 MHz source counts can be modelled by the same populations that explain the 1.4 GHz source counts, assuming a spectral index of -0.7 for the starburst galaxies and the steep spectrum AGN population. We find a similar dependence of luminosity evolution on redshift for the starburst galaxies at 610 MHz as is found at 1.4 GHz (i.e. Q= 2.45 (+0.3,-0.4)).
We present the X-ray spectra of 86 optically-identified sources in the 13H XMM-Newton/Chandra deep field which have >70 X-ray counts. The sample consists of 50 broad line AGN, 25 narrow emission line galaxies, 6 absorption line galaxies, and 5 Galactic stars. The majority (42/50) of the broad line AGN have X-ray spectra which are consistent with a power law shape. They have a mean photon index of Gamma = 2.0 +- 0.1 and an intrinsic dispersion sigma = 0.4 +- 0.1. Five BLAGN show a deficit of soft X-rays, indicating absorption. Significant absorption is more common in the narrow emission line galaxies (13/25) and absorption line galaxies (2/6) than in the broad line AGN (5/50), but is not universal in any of these classes of object. The majority of the 20 absorbed sources have X-ray spectra consistent with a simple cold photoelectric absorber, but 6/20 require more complex models with either an additional component of soft X-ray emitting plasma, or an ionised absorber. Of the 16 galaxies which do not show evidence for X-ray absorption, only 2 objects are likely to be powered by star formation, and both have 2-10 keV X-ray luminosities of <= 10^40 cgs. The X-ray emission in the other 14 unabsorbed NELGs and galaxies is most likely powered by AGN, which are not detected in the optical because they are outshone by their luminous host galaxies. The Galactic stars show multi-temperature thermal spectra which peak between 0.5 and 1 keV. Star/AGN discrimination is possible for 4 of the 5 stars solely from their X-ray spectra.
The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of luminous low-mass X-ray binaries. After excluding these point sources, spectra were accumulated over a circular region of $6arcmin$ (1.2 kpc) centered on the nucleus. In the energy range above 2 keV, these residual spectra are understood mainly as contributions of unresolved faint sources and spill-over of photons from the excluded point sources. There is in addition a hint of a $sim 6.6$ keV line emission, which can be produced by a hot (temperature several keV) thin-thermal plasma. Below 2 keV, the spectra involve three additional softer components expressed by thin-thermal plasma emission models, of which the temperatures are $sim 0.6$, $sim 0.3$, and $sim 0.1$ keV. Their 0.5--10 keV luminosities within 6$arcmin$ are measured to be $sim 1.2 times 10^{38}$ erg s$^{-1}$, $sim 1.6 times 10^{38}$ erg s$^{-1}$, and $sim 4 times 10^{37}$ erg s$^{-1}$ in the order of decreasing temperature. The archival Chandra data of the central region of M31 yielded consistent results. By incorporating different annular regions, all the three softer thermal components were confirmed to be significantly extended. These results are compared with reports from previous studies. A discussion is presented on the origin of each thermal emission component.
(abridged) The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick AGN. The large effective area of XMMin the 2--10 and 5--10 keV bands, coupled with a 3.45 Ms nominal exposure time, allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM survey currently published in the 5--10 keV band. The large multi-wavelength and spectroscopic coverage of the CDFS area allows for an immediate and abundant scientific return. We present the data reduction of the XMM-CDFS observations, the method for source detection in the 2--10 and 5--10keV bands, and the resulting catalogues. A number of 339 and 137 sources are listed in the above bands with flux limits of 6.6e-16 and 9.5e-16 erg/s/cm^2, respectively. The flux limits at 50% of the maximum sky coverage are 1.8e-15 and 4.0e-15 erg/s/cm^2, respectively. The catalogues have been cross-correlated with the Chandra ones: 315 and 130 identifications have been found with a likelihood-ratio method, respectively. A number of 15 new sources, previously undetected by Chandra, is found; 5 of them lie in the 4 Ms area. Redshifts, either spectroscopic or photometric, are available for ~92% of the sources. The number counts in both bands are presented and compared to other works. The survey coverage has been calculated with the help of two extensive sets of simulations, one set per band. The simulations have been produced with a newly-developed simulator, written with the aim of the most careful reproduction of the background spatial properties. We present a detailed decomposition of the XMM background into its components: cosmic, particle, and residual soft protons.