Do you want to publish a course? Click here

The Star-formation History of the Universe as Revealed from Deep Radio Observations of the 13H XMM-Newton/Chandra Deep Field

389   0   0.0 ( 0 )
 Added by Nick Seymour
 Publication date 2006
  fields Physics
and research's language is English
 Authors N. Seymour




Ask ChatGPT about the research

Discerning the exact nature of the faint (sub-mJy) radio population has been historically difficult due to the low luminosity of these sources at most wavelengths. Using deep observations from Chandra/XMM-Newton/Spitzer and ground based follow up we are able to disentangle the AGN and star-forming populations for the first time in a deep multi-frequency GMRT/VLA/MERLIN Survey. The many diagnostics include radio luminosity, morphology, radio to mid-IR flux density ratios, radio to optical flux density ratios and radio spectral indices. Further diagnostics, e.g. optical spectra X-ray spectra/hardness ratios, IR colours indicate the presence of the AGN {em independent} of whether the radio emission is powered by AGN or star-formation. We are able to examine the star-formation history of the universe up to z=2.5 in a unique way based on an unbiased star-formation rate indicator, radio luminosity. This work provides an alternative perspective on the distribution of star-formation by mass, ``downsizing and allows us to examine the prevalence of AGN in star-bursts.



rate research

Read More

184 - N. Seymour 2008
Discerning the exact nature of the sub-mJy radio population has been historically difficult due to the low luminosity of these sources at most wavelengths. Using deep ground based optical follow-up and observations from the Spitzer Space Telescope we are able to disentangle the radio-selected Active Galactic Nuclei (AGN) and Star Forming Galaxy (SFG) populations for the first time in a deep multi-frequency VLA/MERLIN Survey of the 13^H XMM-Newton/Chandra Deep Field. The discrimination diagnostics include radio morphology, radio spectral index, radio/near-IR and mid-IR/radio flux density ratios. We are now able to calculate the extragalactic Euclidean normalised source counts separately for AGN and SFGs. We find that while SFGs dominate at the faintest flux densities and account for the majority of the up-turn in the counts, AGN still make up around one quarter of the counts at ~5 uJy (1.4 GHz). Using radio luminosity as an unobscured star formation rate (SFR) measure we are then able to examine the comoving SFR density of the Universe up to z=3 which agrees well with measures at other wavelengths. We find a rough correlation of SFR with stellar mass for both the sample presented here and a sample of local radio-selected SFGs from the 6df-NVSS survey. This work also confirms the existence of, and provides alternative evidence for, the evolution of distribution of star formation by galaxy mass: ``downsizing. As both these samples are SFR-selected, this result suggests that there is a maximum SFR for a given galaxy that depends linearly on its stellar mass. The low ``characteristic times (inverse specific SFR) of the SFGs in our sample are similar to those of the 6dF-NVSS sample, implying that most of these sources are in a current phase of enhanced star formation.
We present the X-ray spectra of 86 optically-identified sources in the 13H XMM-Newton/Chandra deep field which have >70 X-ray counts. The sample consists of 50 broad line AGN, 25 narrow emission line galaxies, 6 absorption line galaxies, and 5 Galactic stars. The majority (42/50) of the broad line AGN have X-ray spectra which are consistent with a power law shape. They have a mean photon index of Gamma = 2.0 +- 0.1 and an intrinsic dispersion sigma = 0.4 +- 0.1. Five BLAGN show a deficit of soft X-rays, indicating absorption. Significant absorption is more common in the narrow emission line galaxies (13/25) and absorption line galaxies (2/6) than in the broad line AGN (5/50), but is not universal in any of these classes of object. The majority of the 20 absorbed sources have X-ray spectra consistent with a simple cold photoelectric absorber, but 6/20 require more complex models with either an additional component of soft X-ray emitting plasma, or an ionised absorber. Of the 16 galaxies which do not show evidence for X-ray absorption, only 2 objects are likely to be powered by star formation, and both have 2-10 keV X-ray luminosities of <= 10^40 cgs. The X-ray emission in the other 14 unabsorbed NELGs and galaxies is most likely powered by AGN, which are not detected in the optical because they are outshone by their luminous host galaxies. The Galactic stars show multi-temperature thermal spectra which peak between 0.5 and 1 keV. Star/AGN discrimination is possible for 4 of the 5 stars solely from their X-ray spectra.
97 - K. F. Gunn 2002
Our VLA observations of the XMM-Newton/Chandra 13hr deep survey field (see Page et al., this proceedings) result in one of the two deepest 1.4GHz radio maps ever made. Within the 15 radius field covered by the deep X-ray data (0.19 sq deg), a total of 556 radio sources are detected, down to a 4 sigma flux limit of 28uJy. Of the 214 Chandra sources, 55 have radio counterparts. The sub-arcsecond accuracy of the VLA and Chandra positions enable us to determine with high confidence the sources common to both surveys. Here we present the relationship between the X-ray and radio source populations at the faintest radio flux limits yet probed by such a study. We discuss how the X-ray/radio relationship differs as a function of optical morphology, ie between unresolved `stellar objects and well resolved galaxies. We then discuss the origin of the X-ray and radio emission, ie AGN, starburst or a mixture of both, in these two classes of object.
Models of galaxy evolution assume some connection between the AGN and star formation activity in galaxies. We use the multi-wavelength information of the CDFS to assess this issue. We select the AGNs from the 3Ms XMM-Newton survey and measure the star-formation rates of their hosts using data that probe rest-frame wavelengths longward of 20 um. Star-formation rates are obtained from spectral energy distribution fits, identifying and subtracting an AGN component. We divide the star-formation rates by the stellar masses of the hosts to derive specific star-formation rates (sSFR) and find evidence for a positive correlation between the AGN activity (proxied by the X-ray luminosity) and the sSFR for the most active systems with X-ray luminosities exceeding Lx=10^43 erg/s and redshifts z~1. We do not find evidence for such a correlation for lower luminosity systems or those at lower redshifts. We do not find any correlation between the SFR (or the sSFR) and the X-ray absorption derived from high-quality XMM-Newton spectra either, showing that the absorption is likely to be linked to the nuclear region rather than the host, while the star-formation is not nuclear. Comparing the sSFR of the hosts to the characteristic sSFR of star-forming galaxies at the same redshift we find that the AGNs reside mostly in main-sequence and starburst hosts, reflecting the AGN - sSFR connection. Limiting our analysis to the highest X-ray luminosity AGNs (X-ray QSOs with Lx>10^44 erg/s), we find that the highest-redshift QSOs (with z>2) reside predominantly in starburst hosts, with an average sSFR more than double that of the main sequence, and we find a few cases of QSOs at z~1.5 with specific star-formation rates compatible with the main-sequence, or even in the quiescent region. (abridged)
This paper presents the star formation history in the NICMOS Northern Deep HDF. It uses the techniques of photometric redshifts and extinctions to correct for extinction of the ultra-violet flux. It presents a new method for correcting for surface brightness diming. It also predicts the 850 micron fluxes of the objects for comparison with SCUBA measurements
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا