Do you want to publish a course? Click here

The XMM-Newton deep survey in the Chandra Deep Field South. III. Point source catalogue and number counts in the hard X-rays

168   0   0.0 ( 0 )
 Added by Piero Ranalli
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick AGN. The large effective area of XMMin the 2--10 and 5--10 keV bands, coupled with a 3.45 Ms nominal exposure time, allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM survey currently published in the 5--10 keV band. The large multi-wavelength and spectroscopic coverage of the CDFS area allows for an immediate and abundant scientific return. We present the data reduction of the XMM-CDFS observations, the method for source detection in the 2--10 and 5--10keV bands, and the resulting catalogues. A number of 339 and 137 sources are listed in the above bands with flux limits of 6.6e-16 and 9.5e-16 erg/s/cm^2, respectively. The flux limits at 50% of the maximum sky coverage are 1.8e-15 and 4.0e-15 erg/s/cm^2, respectively. The catalogues have been cross-correlated with the Chandra ones: 315 and 130 identifications have been found with a likelihood-ratio method, respectively. A number of 15 new sources, previously undetected by Chandra, is found; 5 of them lie in the 4 Ms area. Redshifts, either spectroscopic or photometric, are available for ~92% of the sources. The number counts in both bands are presented and compared to other works. The survey coverage has been calculated with the help of two extensive sets of simulations, one set per band. The simulations have been produced with a newly-developed simulator, written with the aim of the most careful reproduction of the background spatial properties. We present a detailed decomposition of the XMM background into its components: cosmic, particle, and residual soft protons.



rate research

Read More

74 - Y. Q. Xue , B. Luo , W. N. Brandt 2016
We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S), implementing a number of recent improvements in Chandra source-cataloging methodology. For the CDF-N/E-CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of $10^{-5}$ that also satisfy a binomial-probability source-selection criterion of $P<0.004$/$P<0.002$. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. (2003) CDF-N/Lehmer et al. (2005) E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having $P$ of $0.004-0.1$/$0.002-0.1$ and $K_sle22.9/K_sle22.3$ mag counterparts. For all $approx1800$ CDF-N and E-CDF-S sources, including the $approx500$ newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed AGN and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of $approx1.5-2.0$ improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available.
We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. The fraction of stellar mass of the present-day universe produced by 1.1 mm sources with >=1 mJy at z >= 1 is ~20%, calculated by the time integration of the star-formation rate density. If we consider the recycled fraction of >0.4, which is the fraction of materials forming stars returned to the interstellar medium, the fraction of stellar mass produced by 1.1 mm sources decrease to <~10%.
We present a new, ambitious survey performed with the Chandra X-ray Observatory of the 9.3 deg$^2$ Bootes field of the NOAO Deep Wide-Field Survey. The wide field probes a statistically representative volume of the Universe at high redshift. The Chandra Deep Wide-Field Survey exploits the excellent sensitivity and angular resolution of Chandra over a wide area, combining 281 observations spanning 15 years, for a total exposure time of 3.4 Ms, and detects 6891 X-ray point sources down to limiting fluxes of $4.7times10^{-16}$, $1.5times10^{-16}$, and $9times10^{-16}$ erg cm$^{-2}$ s$^{-1}$, in the $0.5-7$ keV, $0.5-2$ keV, and $2-7$ keV bands, respectively. The robustness and reliability of the detection strategy is validated through extensive, state-of-the-art simulations of the whole field. Accurate number counts, in good agreement with previous X-ray surveys, are derived thanks to the uniquely large number of point sources detected, which resolve $65.0 pm 12.8%$ of the cosmic X-ray background between $0.5-2$ keV and $81.0 pm 11.5%$ between $2-7$ keV. Exploiting the wealth of multi-wavelength data available on the field, we assign redshifts to $sim 94%$ of the X-ray sources, estimate their obscuration and derive absorption-corrected luminosities. We provide an electronic catalog containing all the relevant quantities needed for future investigations.
85 - B. Luo , W. N. Brandt , Y. Q. Xue 2016
We present X-ray source catalogs for the $approx7$ Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin$^2$. Utilizing WAVDETECT for initial source detection and ACIS Extract for photometric extraction and significance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0.5-7.0 keV, 0.5-2.0 keV, and 2-7 keV. A supplementary source catalog is also provided including 47 lower-significance sources that have bright ($K_sle23$) near-infrared counterparts. We identify multiwavelength counterparts for 992 (98.4%) of the main-catalog sources, and we collect redshifts for 986 of these sources, including 653 spectroscopic redshifts and 333 photometric redshifts. Based on the X-ray and multiwavelength properties, we identify 711 active galactic nuclei (AGNs) from the main-catalog sources. Compared to the previous $approx4$ Ms CDF-S catalogs, 291 of the main-catalog sources are new detections. We have achieved unprecedented X-ray sensitivity with average flux limits over the central $approx1$ arcmin$^2$ region of $approx1.9times10^{-17}$, $6.4times10^{-18}$, and $2.7times10^{-17}$ erg cm$^{-2}$ s$^{-1}$ in the three X-ray bands, respectively. We provide cumulative number-count measurements observing, for the first time, that normal galaxies start to dominate the X-ray source population at the faintest 0.5-2.0 keV flux levels. The highest X-ray source density reaches $approx50,500$ deg$^{-2}$, and $47%pm4%$ of these sources are AGNs ($approx23,900$ deg$^{-2}$).
We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg^2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90% complete above 2.5 mJy. Of the 85 sources detected, 55% have steep spectra (alpha_{1.4}^{20} < -0.5) and 45% have flat or inverted spectra (alpha_{1.4}^{20} >= -0.5). The steep-spectrum sources tend to have single power-law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (alpha_{1.4}^{20} >= 0.0) sources, 10 have clearly defined peaks in their spectra with alpha_{1.4}^{5.5} > 0.15 and alpha_{9}^{18} < -0.15. On a 3-yr timescale, at least 10 sources varied by more than 15% at 20 GHz, showing that variability is still common at the low flux densities probed by the AT20G-deep pilot survey. We find a strong and puzzling shift in the typical spectral index of the 15-20 GHz source population when combining data from the AT20G, Ninth Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ~1 Jy to ~5 mJy, which is followed by a shift back towards a flatter-spectrum population below ~5 mJy. The 5-GHz source-count model by Jackson & Wall (1999), which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ~5 mJy. It is therefore possible that another population of sources is contributing to this effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا