No Arabic abstract
We present numerical simulations of the electron-positron plasma creation process in a simple neutron star magnetosphere. We have developed a set of cascade `kernels, which represent the endpoint of the pair cascades resulting from monoenergetic photon seeds. We explore two popular models by convolving these kernels with the seed photon distributions produced by curvature radiation and by inverse Compton scattering. We find that the pair plasma in either case is well-described in its rest frame by a relativistic Maxwellian distribution with temperature near mc^2/k_B. We present cascade multiplicities and efficiencies for a range of seed particle energies and stellar magnetic fields. We find that the efficiencies and multiplicities of pair creation are often lower than has been assumed in previous work.
In the present work one- and two-photon pair production in a subcritical magnetic field have been considered. Two-photon production has been studied in the resonant case, when the cross section considerably increases compared to the nonresonant case. While one-photon pair production is considered to be the main mechanism of plasma generation in a pulsar magnetosphere, we suggest the existence of another one, which is resonant two-photon production process.
We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.
Current closure in the pulsar magnetosphere holds the key to its structure. We must determine not only the global electric circuit, but also the source of its electric charge carriers. We address this issue with the minimum number of assumptions: a) The magnetosphere is everywhere ideal and force-free, except above the polar cap and in some finite part of the current sheet; and b) pairs are produced above the polar cap with multiplicity kappa. We show that a thin region of width delta ~ r_pc/2 kappa << r_pc along the rim of the polar cap provides all the charges that are needed in the equatorial and separatrix electric current sheet. These charges are transferred to the current sheet in a narrow dissipation zone just outside the magnetospheric Y-point. The maximum accelerating potential in this region is equal to the potential drop in the thin polar cap rim, which is approximately equal to 1/kappa times the potential drop from the center to the edge of the polar cap. The dissipated electromagnetic energy is approximately equal to 0.5/kappa times the total pulsar spindown energy loss. Our framework allows to calculate the high energy emission in terms of the pair multiplicity.
This paper deals with the Crab Nebula problem to suggest that particle acceleration takes place not only at the inner shock but also over a larger region in the nebula with disordered magnetic field. Kennel and Cornoniti (1984) constructed a spherically symmetric model of the Crab Nebula and concluded that the pulsar wind which excites the nebular is kinetic-energy dominant (KED) because the nebula flow induced by KED wind is favorable to explain the nebula spectrum and expansion speed. This is true even with new Chandra observation, which provides newly the spatially resolved spectra. We have shown below with 3D modelling and the Chandra image that pure toroidal magnetic field and KED wind are incompatible with the Chandra observation.
We present a global kinetic plasma simulation of an axisymmetric pulsar magnetosphere with self-consistent $e^pm$ pair production. We use the particle-in-cell method and log-spherical coordinates with a grid size $4096times 4096$. This allows us to achieve a high voltage induced by the pulsar rotation and investigate pair creation in a young pulsar far from the death line. We find the following. (1) The energy release and $e^pm$ creation are strongly concentrated in the thin, Y-shaped current sheet, with a peak localized in a small volume at the Y-point. (2) The Y-point is shifted inward from the light cylinder by $sim 15%$, and breathes with a small amplitude. (3) The dense $e^pm$ cloud at the Y-point is in ultra-relativistic rotation, which we call super-rotation, because it exceeds co-rotation with the star. The cloud receives angular momentum flowing from the star along the poloidal magnetic lines. (4) Gamma-ray emission peaks at the Y-point and is collimated in the azimuthal direction, tangent to the Y-point circle. (5) The separatrix current sheet between the closed magnetosphere and the open magnetic field lines is sustained by the electron backflow from the Y-point cloud. Its thickness is self-regulated to marginal charge starvation. (6) Only a small fraction of dissipation occurs in the separatrix inward of the Y-point. A much higher power is released in the equatorial plane, especially at the Y-point where the created dense $e^pm$ plasma is spun up and intermittently ejected through the nozzle between the two open magnetic fluxes.