Do you want to publish a course? Click here

Helium-like triplet diagnostics

73   0   0.0 ( 0 )
 Added by Delphine Porquet
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 1s2-1s2l lines are the most intense He-like ions lines. They are used as spectroscopic diagnostics for solar active regions as well as for different laboratory plasmas. Nowadays, it exits very high spectral resolution instruments and, for intense X-ray sources, one can do spectroscopic diagnostics from line ratios. With XMM (RGS) and Chandra (LETGS, HETGS) spectral resolutions and for several atomic elements, it is particularly possible to separate a 3 blended line set, the so-called He-like triplet: Resonance (r), Intercombination (i) and Forbidden (f), which are dominated respectively by lines issued from the following levels : 1s2p 1P1, 1s2p 3P1,2 and 1s2s 3S1. We shall show that the measurement of two different ratios between these 3 lines (R = f/i and G = (f + i)/r) give quantitative informations on the nature of the emitting plasma (photo-ionized or collisional) and on its electronic density and temperature. A more refined analysis must also include satellite line contributions.



rate research

Read More

He-like ions produce distinctive series of triplet lines under various astrophysical conditions. However, this emission can be affected by line absorption from Li-like ions in the same medium. We investigate this absorption of He-like triplets and present the implications for diagnostics of plasmas in photoionisation equilibrium using the line ratios of the triplets. Our computations were carried out for the O VI and Fe XXIV absorption of the O VII and Fe XXV triplet emission lines, respectively. The fluorescent emission by the Li-like ions and continuum absorption of the He-like ion triplet lines are also investigated. We determine the absorption of the triplet lines as a function of Li-like ion column density and velocity dispersion of the emitting and absorbing medium. We find O VI line absorption can significantly alter the O VII triplet line ratios in optically-thin plasmas, by primarily absorbing the intercombination lines, and to a lesser extent, the forbidden line. Because of intrinsic line absorption by O VI inside a photoionised plasma, the predicted ratio of forbidden to intercombination line intensity for the O VII triplet increases from 4 up to an upper limit of 16. This process can explain the triplet line ratios that are higher than expected and that are seen in some X-ray observations of photoionised plasmas. For the Fe XXV triplet, line absorption by Fe XXIV becomes less apparent owing to significant fluorescent emission by Fe XXIV. Without taking the associated Li-like ion line absorption into account, the density diagnosis of photoionised plasmas using the observed line ratios of the He-like ion triplet emission lines can be unreliable, especially for low-Z ions.
We present He-like line ratios (resonance, intercombination and forbidden lines) for totally and partially photoionized media. For solar plasmas, these line ratios are already widely used for density and temperature diagnostics of coronal (collisional) plasmas. In the case of totally and partially photoionized plasmas, He-like line ratios allow for the determination of the ionization processes involved in the plasma (photoionization with or without an additional collisional ionization process), as well as the density and the electronic temperature. With the new generation of X-ray satellites, Chandra/AXAF, XMM and Astro-E, it will be feasible to obtain both high spectral resolution and high sensitivity observations. Thus in the coming years, the ratios of these three components will be measurable for a large number of non-solar objects. In particular, these ratios could be applied to the Warm Absorber-Emitter, commonly present in Active Galactic Nuclei (AGN). A better understanding of the Warm Absorber connection to other regions (Broad Line Region, Narrow Line Region) in AGN (Seyferts type-1 and type-2, low- and high-redshift quasars...) will be an important key to obtaining strong constraints on unified schemes. We have calculated He-like line ratios, for Z=6, 7, 8, 10, 12 and 14, taking into account the upper level radiative cascades which we have computed for radiative and dielectronic recombinations and collisional excitation. The atomic data are tabulated over a wide range of temperatures in order to be used for interpreting a large variety of astrophysical plasmas.
In this study we show how hydrogen and helium lines modelling can be used to make a diagnostic of active and eruptive prominences. One motivation for this work is to identify the physical conditions during prominence activation and eruption. Hydrogen and helium lines are key in probing different parts of the prominence structure and inferring the plasma parameters. However, the interpretation of observations, being either spectroscopic or obtained with imaging, is not straightforward. Their resonance lines are optically thick, and the prominence plasma is out of local thermodynamic equilibrium due to the strong incident radiation coming from the solar disk. In view of the shift of the incident radiation occurring when the prominence plasma flows radially, it is essential to take into account velocity fields in the prominence diagnostic. Therefore we need to investigate the effects of the radial motion of the prominence plasma on hydrogen and helium lines. The method that we use is the resolution of the radiative transfer problem in the hydrogen and helium lines out of local thermodynamic equilibrium. We study the variation of the computed integrated intensities in H and He lines with the radial velocity of the prominence plasma. We can confirm that there exist suitable lines which can be used to make a diagnostic of the plasma in active and eruptive prominences in the presence of velocity fields.
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling of solid from the TO and appearance of supersolid. However, the resonant period can be changed by mechanisms other than supersolid, such as the elastic stiffening of solid helium that is widely accepted as the reason for the TO response. To demonstrate the irrotational nature more directly, the previous experiments superimposed the dc rotation onto the TO and revealed strong suppression on the TO response without affecting the shear modulus. This result is inconsistent with the simple temperature-dependent elasticity model and supports the supersolid scenario. Here, we re-examine the rotational effect on solid helium with a two-frequency rigid TO to clarify the conflicting observations. Surprisingly, most of the result of previous rotation experiments were not reproduced. Instead, we found a very interesting superfluid-like irrotational response that cannot be explained by elastic models.
As a continuation of Part I (Int. Journal of Quantum Chem. 2021; 121: qua.26586), dedicated to the ground state of He-like and Li-like isoelectronic sequences for nuclear charges $Z leq 20$, a few ultra-compact wave functions in the form of generalized Hylleraas-Kinoshita functions are constructed, which describe the domain of applicability of the Quantum Mechanics of Coulomb Charges (QMCC) for energies (4-5 significant digits (s.d.)) of two excited states of He-like ions: the spin-singlet (first) excited state $2^1 S$ and for lowest spin-triplet $1^3 S$ state. For both states it provides absolute accuracy for energy $sim 10^{-3}$,a.u., exact values for cusp parameters and also for 6 expectation values the relative accuracy $sim 10^{-2}$. Bressanini-Reynolds observation about the special form of nodal surface of $2^1 S$ state for Helium is confirmed and extended to ions with $Z > 2$. Critical charges $Z=Z_B$, where ultra-compact trial functions loose their square-integrability, are estimated: $Z_B(1^1 S)approx Z_B(2^1 S)sim 0.905$ and $Z_B(1^3 S)sim 0.902$. For both states the Majorana formula - the energy as the second degree polynomial in $Z$ - provides accurately the 4-5 significant digits for $Z leq 20$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا