No Arabic abstract
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling of solid from the TO and appearance of supersolid. However, the resonant period can be changed by mechanisms other than supersolid, such as the elastic stiffening of solid helium that is widely accepted as the reason for the TO response. To demonstrate the irrotational nature more directly, the previous experiments superimposed the dc rotation onto the TO and revealed strong suppression on the TO response without affecting the shear modulus. This result is inconsistent with the simple temperature-dependent elasticity model and supports the supersolid scenario. Here, we re-examine the rotational effect on solid helium with a two-frequency rigid TO to clarify the conflicting observations. Surprisingly, most of the result of previous rotation experiments were not reproduced. Instead, we found a very interesting superfluid-like irrotational response that cannot be explained by elastic models.
In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up of the B-phase superfluid component to a sudden change in the rotation velocity. Compared to measurements at low field with no A-phase, where these responses are laminar in cylindrically symmetric flow, spin down with vortices extending across the AB interface is found to be faster, indicating enhanced dissipation from turbulence. Spin up in turn is slower, owing to rapid annihilation of remanent vortices before the rotation increase. As confirmed by both our NMR signal analysis and vortex filament calculations, these observations are explained by the additional force acting on the B-phase vortex ends at the AB interface.
An equilibrium multielectron bubble in liquid helium is a fascinating object with a spherical two-dimensional electron gas on its surface. We describe two ways of creating them. MEBs have been observed in the dome of a cylindrical cell with an unexpectedly short lifetime; we show analytically why these MEBs can discharge by tunneling. Using a novel method, MEBs have been extracted from a vapor sheath around a hot filament in superfluid helium by applying electric fields up to 15 kV/cm, and photographed with high-speed video. Charges as high as 1.6x10-9 C (~1010 electrons) have been measured. The latter method provides a means of capture in an electromagnetic trap to allow the study of the extensive exciting properties of these elusive objects.
The $A$ phase and the $B$ phase of superfluid He-3 are well studied, both theoretically and experimentally. The decay time scale of the $A$ phase to the $B$ phase of a typical supercooled superfluid $^3$He-A sample is calculated to be $10^{20,000}$ years or longer, yet the actual first-order phase transition of supercooled $A$ phase happens very rapidly (in seconds to minutes) in the laboratory. We propose that this very fast phase transition puzzle can be explained by the resonant tunneling effect in field theory, which generically happens since the degeneracies of both the $A$ and the $B$ phases are lifted by many small interaction effects. This explanation predicts the existence of peaks in the $A to B$ transition rate for certain values of the temperature, pressure, and magnetic field. Away from these peaks, the transition simply will not happen.
We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are shown to be capable of reaching phases inaccessible through homogenous nucleation on the measured timescales. We demonstrate qualitative agreements with prior observations and provide a definite, distinctive prediction that could be verified through future experiments or, perhaps, a specific analysis of existing data.
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia approach those of a classical fluid at high frequencies, the observed vortex density is consistently lower than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular triangular arrays, with little distortion even near the condensate surface. These results are shown to be a direct consequence of the inhomogeneous confining potential.