Do you want to publish a course? Click here

Diagnostics of active and eruptive prominences through hydrogen and helium lines modelling

98   0   0.0 ( 0 )
 Added by Nicolas Labrosse
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study we show how hydrogen and helium lines modelling can be used to make a diagnostic of active and eruptive prominences. One motivation for this work is to identify the physical conditions during prominence activation and eruption. Hydrogen and helium lines are key in probing different parts of the prominence structure and inferring the plasma parameters. However, the interpretation of observations, being either spectroscopic or obtained with imaging, is not straightforward. Their resonance lines are optically thick, and the prominence plasma is out of local thermodynamic equilibrium due to the strong incident radiation coming from the solar disk. In view of the shift of the incident radiation occurring when the prominence plasma flows radially, it is essential to take into account velocity fields in the prominence diagnostic. Therefore we need to investigate the effects of the radial motion of the prominence plasma on hydrogen and helium lines. The method that we use is the resolution of the radiative transfer problem in the hydrogen and helium lines out of local thermodynamic equilibrium. We study the variation of the computed integrated intensities in H and He lines with the radial velocity of the prominence plasma. We can confirm that there exist suitable lines which can be used to make a diagnostic of the plasma in active and eruptive prominences in the presence of velocity fields.



rate research

Read More

Active prominences exhibit plasma motions, resulting in difficulties with the interpretation of spectroscopic observations. These solar features being strongly influenced by the radiation coming from the solar disk, Doppler dimming or brightening effects may arise, depending on which lines are observed and on the velocity of the plasma. Interlocking between the different atomic energy levels and non local thermodynamic equilibrium lead to non-trivial spectral line profiles, and this calls for complex numerical modelling of the radiative transfer in order to understand the observations. We present such a tool, which solves the radiative transfer and statistical equilibrium for H, He I, He II, and Ca II, in moving prominences where radial plasma motions are taking place. It is found that for isothermal, isobaric prominence models, the He II resonance lines are very sensitive to the Doppler effect and show a strong Doppler dimming. The Ca II lines are not very sensitive to the Doppler effect for the prominence models considered here. We illustrate how the code makes it possible to retrieve the plasma thermodynamic parameters by comparing computed and observed line profiles of hydrogen and helium resonance lines in a quiescent prominence.
170 - N. Labrosse 2010
This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.
Observations of the Mg II h and k lines in solar prominences with IRIS reveal a wide range of line shapes from simple non-reversed profiles to typical double-peaked reversed profiles with many other complex line shapes possible. The physical conditions responsible for this variety are not well understood. Our aim is to understand how physical conditions inside a prominence slab influence shapes and properties of emergent Mg II line profiles. We compute the spectrum of Mg II lines using a one-dimensional non-LTE radiative transfer code for two large grids of model atmospheres (isothermal isobaric, and with a transition region). The influence of the plasma parameters on the emergent spectrum is discussed in detail. Our results agree with previous studies. We present several dependencies between observables and prominence parameters which will help with interpretation of observations. A comparison with known limits of observed line parameters suggests that most observed prominences emitting in Mg II h and k lines are cold, low pressure, and optically thick structures. Our results indicate that there are good correlations between the Mg II k line intensities and the intensities of hydrogen lines, as well as the emission measure. One-dimensional non-LTE radiative transfer codes are well-suited to understand the main characteristics of the Mg II h and k line profiles in solar prominences, but more advanced codes will be necessary for detailed comparisons.
We aim at studying the effect of radial motions on the spectrum emitted by moving prominences in the helium resonance lines and at facilitating the interpretation of observations, in order to improve our understanding of these dynamic structures. We develop our non-local thermodynamic equilibrium radiative transfer code formerly used for the study of quiescent prominences. The new numerical code is now able to solve the statistical equilibrium and radiative transfer equations in the non-static case by using velocity-dependent boundary conditions for the solution of the radiative transfer problem. This first study investigates the effects of different physical conditions (temperature, pressure, geometrical thickness) on the emergent helium radiation. The motion of the prominence plasma induces a Doppler dimming effect on the resonance lines of He I and He II. The velocity effects are particularly important for the He II 304 A line as it is mostly formed by resonant diffusion of incident radiation under prominence conditions. The He I resonance lines at 584 and 537 A also show some sensitivity to the motion of the plasma, all the more when thermal emission is not too important in these lines. We also show that it is necessary to consider partial redistribution in frequency for the scattering of the incident radiation. This set of helium lines offers strong diagnostic possibilities that can be exploited with the SOHO spectrometers and with the EIS spectrometer on board the Hinode satellite. The addition of other helium lines and of lines from other elements (in particular hydrogen) in the diagnostics will further enhance the strength of the method.
177 - Misty C. Bentz 2010
We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission, which we have previously reported. We present here the light curves for the Halpha, Hgamma, HeII 4686, and HeI 5876 emission lines and the time lags for the emission-line responses relative to changes in the continuum flux. Combining each emission-line time lag with the measured width of the line in the variable part of the spectrum, we determine a virial mass of the central supermassive black hole from several independent emission lines. We find that the masses are generally consistent within the uncertainties. The time-lag response as a function of velocity across the Balmer line profiles is examined for six of the AGNs. Finally we compare several trends seen in the dataset against the predictions from photoionization calculations as presented by Korista & Goad. We confirm several of their predictions, including an increase in responsivity and a decrease in the mean time lag as the excitation and ionization level for the species increases. Further confirmation of photoionization predictions for broad-line gas behavior will require additional monitoring programs for these AGNs while they are in different luminosity states. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا