Do you want to publish a course? Click here

Tuna-AI: tuna biomass estimation with Machine Learning models trained on oceanography and echosounder FAD data

60   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Echo-sounder data registered by buoys attached to drifting FADs provide a very valuable source of information on populations of tuna and their behaviour. This value increases whenthese data are supplemented with oceanographic data coming from CMEMS. We use these sources to develop Tuna-AI, a Machine Learning model aimed at predicting tuna biomass under a given buoy, which uses a 3-day window of echo-sounder data to capture the daily spatio-temporal patterns characteristic of tuna schools. As the supervised signal for training, we employ more than 5000 set events with their corresponding tuna catch reported by the AGAC tuna purse seine fleet.

rate research

Read More

Data cleansing is a typical approach used to improve the accuracy of machine learning models, which, however, requires extensive domain knowledge to identify the influential instances that affect the models. In this paper, we propose an algorithm that can suggest influential instances without using any domain knowledge. With the proposed method, users only need to inspect the instances suggested by the algorithm, implying that users do not need extensive knowledge for this procedure, which enables even non-experts to conduct data cleansing and improve the model. The existing methods require the loss function to be convex and an optimal model to be obtained, which is not always the case in modern machine learning. To overcome these limitations, we propose a novel approach specifically designed for the models trained with stochastic gradient descent (SGD). The proposed method infers the influential instances by retracing the steps of the SGD while incorporating intermediate models computed in each step. Through experiments, we demonstrate that the proposed method can accurately infer the influential instances. Moreover, we used MNIST and CIFAR10 to show that the models can be effectively improved by removing the influential instances suggested by the proposed method.
In this paper, we present a new explainability formalism designed to explain how each input variable of a test set impacts the predictions of machine learning models. Hence, we propose a group explainability formalism for trained machine learning decision rules, based on their response to the variability of the input variables distribution. In order to emphasize the impact of each input variable, this formalism uses an information theory framework that quantifies the influence of all input-output observations based on entropic projections. This is thus the first unified and model agnostic formalism enabling data scientists to interpret the dependence between the input variables, their impact on the prediction errors, and their influence on the output predictions. Convergence rates of the entropic projections are provided in the large sample case. Most importantly, we prove that computing an explanation in our framework has a low algorithmic complexity, making it scalable to real-life large datasets. We illustrate our strategy by explaining complex decision rules learned by using XGBoost, Random Forest or Deep Neural Network classifiers on various datasets such as Adult income, MNIST and CelebA. We finally make clear its differences with the explainability strategies textit{LIME} and textit{SHAP}, that are based on single observations. Results can be reproduced by using the freely distributed Python toolbox https://gems-ai.com}.
We introduce Tuna, a static analysis approach to optimizing deep neural network programs. The optimization of tensor operations such as convolutions and matrix multiplications is the key to improving the performance of deep neural networks. Many deep learning model optimization mechanisms today use dynamic analysis, which relies on experimental execution on a target device to build a data-driven cost model of the program. The reliance on dynamic profiling not only requires access to target hardware at compilation time but also incurs significant cost in machine resources. We introduce an approach that profiles the program by constructing features based on the target hardware characteristics in order. We use static analysis of the relative performance of tensor operations to optimize the deep learning program. Experiments show that our approach can achieve up to 11x performance compared to dynamic profiling based methods with the same compilation time.
An increasing number of model-agnostic interpretation techniques for machine learning (ML) models such as partial dependence plots (PDP), permutation feature importance (PFI) and Shapley values provide insightful model interpretations, but can lead to wrong conclusions if applied incorrectly. We highlight many general pitfalls of ML model interpretation, such as using interpretation techniques in the wrong context, interpreting models that do not generalize well, ignoring feature dependencies, interactions, uncertainty estimates and issues in high-dimensional settings, or making unjustified causal interpretations, and illustrate them with examples. We focus on pitfalls for global methods that describe the average model behavior, but many pitfalls also apply to local methods that explain individual predictions. Our paper addresses ML practitioners by raising awareness of pitfalls and identifying solutions for correct model interpretation, but also addresses ML researchers by discussing open issues for further research.
AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. They often combine techniques from many different sub-fields of machine learning in order to find a model or set of models that optimize a user-supplied criterion, such as predictive performance. The ultimate goal of such systems is to reduce the amount of time spent on menial tasks, or tasks that can be solved better by algorithms while leaving decisions that require human intelligence to the end-user. In recent years, the importance of other criteria, such as fairness and interpretability, and many others have become more and more apparent. Current AutoML frameworks either do not allow to optimize such secondary criteria or only do so by limiting the systems choice of models and preprocessing steps. We propose to optimize additional criteria defined by the user directly to guide the search towards an optimal machine learning pipeline. In order to demonstrate the need and usefulness of our approach, we provide a simple multi-criteria AutoML system and showcase an exemplary application.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا