Do you want to publish a course? Click here

End-to-End Conversational Search for Online Shopping with Utterance Transfer

245   0   0.0 ( 0 )
 Added by Liqiang Xiao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Successful conversational search systems can present natural, adaptive and interactive shopping experience for online shopping customers. However, building such systems from scratch faces real word challenges from both imperfect product schema/knowledge and lack of training dialog data.In this work we first propose ConvSearch, an end-to-end conversational search system that deeply combines the dialog system with search. It leverages the text profile to retrieve products, which is more robust against imperfect product schema/knowledge compared with using product attributes alone. We then address the lack of data challenges by proposing an utterance transfer approach that generates dialogue utterances by using existing dialog from other domains, and leveraging the search behavior data from e-commerce retailer. With utterance transfer, we introduce a new conversational search dataset for online shopping. Experiments show that our utterance transfer method can significantly improve the availability of training dialogue data without crowd-sourcing, and the conversational search system significantly outperformed the best tested baseline.



rate research

Read More

In spoken question answering, QA systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora. In this task, our main objective is to build a QA system to deal with conversational questions both in spoken and text forms, and to explore the plausibility of providing more cues in spoken documents with systems in information gathering. To this end, instead of adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which directly fuse audio-text features to reduce the misalignment between automatic speech recognition hypotheses and the reference transcriptions. In addition, to evaluate the capacity of QA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 120k question-answer pairs. Experiments demonstrate that our proposed method achieves superior performance in spoken conversational question answering.
Named entity recognition (NER) is a critical step in modern search query understanding. In the domain of eCommerce, identifying the key entities, such as brand and product type, can help a search engine retrieve relevant products and therefore offer an engaging shopping experience. Recent research shows promising results on shared benchmark NER tasks using deep learning methods, but there are still unique challenges in the industry regarding domain knowledge, training data, and model production. This paper demonstrates an end-to-end solution to address these challenges. The core of our solution is a novel model training framework TripleLearn which iteratively learns from three separate training datasets, instead of one training set as is traditionally done. Using this approach, the best model lifts the F1 score from 69.5 to 93.3 on the holdout test data. In our offline experiments, TripleLearn improved the model performance compared to traditional training approaches which use a single set of training data. Moreover, in the online A/B test, we see significant improvements in user engagement and revenue conversion. The model has been live on homedepot.com for more than 9 months, boosting search
We present a novel conversational-context aware end-to-end speech recognizer based on a gated neural network that incorporates conversational-context/word/speech embeddings. Unlike conventional speech recognition models, our model learns longer conversational-context information that spans across sentences and is consequently better at recognizing long conversations. Specifically, we propose to use the text-based external word and/or sentence embeddings (i.e., fastText, BERT) within an end-to-end framework, yielding a significant improvement in word error rate with better conversational-context representation. We evaluated the models on the Switchboard conversational speech corpus and show that our model outperforms standard end-to-end speech recognition models.
Achieving high accuracy with end-to-end speech recognizers requires careful parameter initialization prior to training. Otherwise, the networks may fail to find a good local optimum. This is particularly true for online networks, such as unidirectional LSTMs. Currently, the best strategy to train such systems is to bootstrap the training from a tied-triphone system. However, this is time consuming, and more importantly, is impossible for languages without a high-quality pronunciation lexicon. In this work, we propose an initialization strategy that uses teacher-student learning to transfer knowledge from a large, well-trained, offline end-to-end speech recognition model to an online end-to-end model, eliminating the need for a lexicon or any other linguistic resources. We also explore curriculum learning and label smoothing and show how they can be combined with the proposed teacher-student learning for further improvements. We evaluate our methods on a Microsoft Cortana personal assistant task and show that the proposed method results in a 19 % relative improvement in word error rate compared to a randomly-initialized baseline system.
We present an extension to the Tacotron speech synthesis architecture that learns a latent embedding space of prosody, derived from a reference acoustic representation containing the desired prosody. We show that conditioning Tacotron on this learned embedding space results in synthesized audio that matches the prosody of the reference signal with fine time detail even when the reference and synthesis speakers are different. Additionally, we show that a reference prosody embedding can be used to synthesize text that is different from that of the reference utterance. We define several quantitative and subjective metrics for evaluating prosody transfer, and report results with accompanying audio samples from single-speaker and 44-speaker Tacotron models on a prosody transfer task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا