Do you want to publish a course? Click here

Towards Data Distillation for End-to-end Spoken Conversational Question Answering

178   0   0.0 ( 0 )
 Added by Chenyu You
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In spoken question answering, QA systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora. In this task, our main objective is to build a QA system to deal with conversational questions both in spoken and text forms, and to explore the plausibility of providing more cues in spoken documents with systems in information gathering. To this end, instead of adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which directly fuse audio-text features to reduce the misalignment between automatic speech recognition hypotheses and the reference transcriptions. In addition, to evaluate the capacity of QA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 120k question-answer pairs. Experiments demonstrate that our proposed method achieves superior performance in spoken conversational question answering.



rate research

Read More

In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving information from ordered utterances. However, the sequential order of dialogue is important to build a robust spoken conversational question answering system, and the changes of utterances order may severely result in low-quality and incoherent corpora. To this end, we introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence among spoken documents. Specifically, we design a joint learning framework where the auxiliary self-supervised tasks can enable the pre-trained SCQA systems towards more coherent and meaningful spoken dialogue learning. We also utilize the proposed self-supervised learning tasks to capture intra-sentence coherence. Experimental results demonstrate that our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models. Our method achieves state-of-the-art results on the Spoken-CoQA dataset.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained completely from scratch to translate unseen sentences. Our method consists of a pyramidal-bidirectional recurrent network combined with a convolutional network to output sentence-level spectrograms in the target language. Empirically, our model achieves competitive performance with state-of-the-art methods on multiple languages and can generalize to unseen speakers.
Spoken question answering (SQA) is a challenging task that requires the machine to fully understand the complex spoken documents. Automatic speech recognition (ASR) plays a significant role in the development of QA systems. However, the recent work shows that ASR systems generate highly noisy transcripts, which critically limit the capability of machine comprehension on the SQA task. To address the issue, we present a novel distillation framework. Specifically, we devise a training strategy to perform knowledge distillation (KD) from spoken documents and written counterparts. Our work makes a step towards distilling knowledge from the language model as a supervision signal to lead to better student accuracy by reducing the misalignment between automatic and manual transcriptions. Experiments demonstrate that our approach outperforms several state-of-the-art language models on the Spoken-SQuAD dataset.
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passage comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.
We propose an end-to-end approach for synthetic QA data generation. Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions. In a nutshell, we feed a passage to the encoder and ask the decoder to generate a question and an answer token-by-token. The likelihood produced in the generation process is used as a filtering score, which avoids the need for a separate filtering model. Our generator is trained by fine-tuning a pretrained LM using maximum likelihood estimation. The experimental results indicate significant improvements in the domain adaptation of QA models outperforming current state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا