Do you want to publish a course? Click here

Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis

97   0   0.0 ( 0 )
 Added by Abhishek Rathod
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the $1$-dimensional homology classes with $mathbb{Z}_2$ coefficients in a given simplicial complex $K$. This problem has been extensively studied in the last few years. For general complexes, the current best deterministic algorithm, by Dey et al., runs in $O(N^omega + N^2 g)$ time, where $N$ denotes the number of simplices in $K$, $g$ denotes the rank of the $1$-homology group of $K$, and $omega$ denotes the exponent of matrix multiplication. In this paper, we present two conceptually simple randomized algorithms that compute a minimum homology basis of a general simplicial complex $K$. The first algorithm runs in $tilde{O}(m^omega)$ time, where $m$ denotes the number of edges in $K$, whereas the second algorithm runs in $O(m^omega + N m^{omega-1})$ time. We also study the problem of finding a minimum cycle basis in an undirected graph $G$ with $n$ vertices and $m$ edges. The best known algorithm for this problem runs in $O(m^omega)$ time. Our algorithm, which has a simpler high-level description, but is slightly more expensive, runs in $tilde{O}(m^omega)$ time.



rate research

Read More

Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an enclosing ball whose radius is at most $epsilon$ away from the optimum (where $Qcal$ is an upper bound on the norm of the points). This improves existing results using emph{coresets}, which yield a $O(nd/epsilon)$ greedy algorithm. Finding the Minimum Enclosing Convex Polytope (MECP) is a related problem wherein a convex polytope of a fixed shape is given and the aim is to find the smallest magnification of the polytope which encloses the given points. For this problem we present a $O(mndQcal/epsilon)$ approximation algorithm, where $m$ is the number of faces of the polytope. Our algorithms borrow heavily from convex duality and recently developed techniques in non-smooth optimization, and are in contrast with existing methods which rely on geometric arguments. In particular, we specialize the excessive gap framework of citet{Nesterov05a} to obtain our results.
This paper studies the polynomial basis that generates the smallest $n$-simplex enclosing a given $n^{text{th}}$-degree polynomial curve in $mathbb{R}^n$. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to overly conservative results in many CAD (computer-aided design) applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the $n^text{th}$-degree polynomial curve with largest convex hull enclosed in a given $n$-simplex. Then, we present a formulation that is independent of the $n$-simplex or $n^{text{th}}$-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any $ninmathbb{N}$, and prove (numerical) global optimality for $n=1,2,3$ and (numerical) local optimality for $n=4$. The results obtained for $n=3$ show that, for any given $3^{text{rd}}$-degree polynomial curve in $mathbb{R}^3$, the MINVO basis is able to obtain an enclosing simplex whose volume is $2.36$ and $254.9$ times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When $n=7$, these ratios increase to $902.7$ and $2.997cdot10^{21}$, respectively.
Given a set of $n$ terminals, which are points in $d$-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pairs Manhattan distance. Even for $d=2$, the problem is NP-hard, but constant-factor approximations are known. For $d ge 3$, the problem is APX-hard; it is known to admit, for any $eps > 0$, an $O(n^eps)$-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set $R$ of $n$ terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in $R$ is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an $O(log^{d+1} n)$-approximation algorithm for GMMN (and, hence, MMN) in $d ge 2$ dimensions and an $O(log n)$-approximation algorithm for 2D. We show that an existing $O(log n)$-approximation algorithm for RSA in 2D generalizes easily to $d>2$ dimensions.
We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MPP. On the positive side, we show how to achieve a constant-factor approximation. When trying to solve MPP instances to provable optimality by means of integer programming, an additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting additional geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that using a natural geometry-based sparsification yields results that are on average within 0.5% of the optimum.
We consider the problem of finding minimum-link rectilinear paths in rectilinear polygonal domains in the plane. A path or a polygon is rectilinear if all its edges are axis-parallel. Given a set $mathcal{P}$ of $h$ pairwise-disjoint rectilinear polygonal obstacles with a total of $n$ vertices in the plane, a minimum-link rectilinear path between two points is a rectilinear path that avoids all obstacles with the minimum number of edges. In this paper, we present a new algorithm for finding minimum-link rectilinear paths among $mathcal{P}$. After the plane is triangulated, with respect to any source point $s$, our algorithm builds an $O(n)$-size data structure in $O(n+hlog h)$ time, such that given any query point $t$, the number of edges of a minimum-link rectilinear path from $s$ to $t$ can be computed in $O(log n)$ time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithm computes such a data structure in $O(nlog n)$ time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا