Do you want to publish a course? Click here

MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves

327   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper studies the polynomial basis that generates the smallest $n$-simplex enclosing a given $n^{text{th}}$-degree polynomial curve in $mathbb{R}^n$. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to overly conservative results in many CAD (computer-aided design) applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the $n^text{th}$-degree polynomial curve with largest convex hull enclosed in a given $n$-simplex. Then, we present a formulation that is independent of the $n$-simplex or $n^{text{th}}$-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any $ninmathbb{N}$, and prove (numerical) global optimality for $n=1,2,3$ and (numerical) local optimality for $n=4$. The results obtained for $n=3$ show that, for any given $3^{text{rd}}$-degree polynomial curve in $mathbb{R}^3$, the MINVO basis is able to obtain an enclosing simplex whose volume is $2.36$ and $254.9$ times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When $n=7$, these ratios increase to $902.7$ and $2.997cdot10^{21}$, respectively.

rate research

Read More

Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an enclosing ball whose radius is at most $epsilon$ away from the optimum (where $Qcal$ is an upper bound on the norm of the points). This improves existing results using emph{coresets}, which yield a $O(nd/epsilon)$ greedy algorithm. Finding the Minimum Enclosing Convex Polytope (MECP) is a related problem wherein a convex polytope of a fixed shape is given and the aim is to find the smallest magnification of the polytope which encloses the given points. For this problem we present a $O(mndQcal/epsilon)$ approximation algorithm, where $m$ is the number of faces of the polytope. Our algorithms borrow heavily from convex duality and recently developed techniques in non-smooth optimization, and are in contrast with existing methods which rely on geometric arguments. In particular, we specialize the excessive gap framework of citet{Nesterov05a} to obtain our results.
96 - Abhishek Rathod 2021
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the $1$-dimensional homology classes with $mathbb{Z}_2$ coefficients in a given simplicial complex $K$. This problem has been extensively studied in the last few years. For general complexes, the current best deterministic algorithm, by Dey et al., runs in $O(N^omega + N^2 g)$ time, where $N$ denotes the number of simplices in $K$, $g$ denotes the rank of the $1$-homology group of $K$, and $omega$ denotes the exponent of matrix multiplication. In this paper, we present two conceptually simple randomized algorithms that compute a minimum homology basis of a general simplicial complex $K$. The first algorithm runs in $tilde{O}(m^omega)$ time, where $m$ denotes the number of edges in $K$, whereas the second algorithm runs in $O(m^omega + N m^{omega-1})$ time. We also study the problem of finding a minimum cycle basis in an undirected graph $G$ with $n$ vertices and $m$ edges. The best known algorithm for this problem runs in $O(m^omega)$ time. Our algorithm, which has a simpler high-level description, but is slightly more expensive, runs in $tilde{O}(m^omega)$ time.
73 - Jean Gallier 2006
In this paper, we investigate the efficiency of various strategies for subdividing polynomial triangular surface patches. We give a simple algorithm performing a regular subdivision in four calls to the standard de Casteljau algorithm (in its subdivision version). A naive version uses twelve calls. We also show that any method for obtaining a regular subdivision using the standard de Casteljau algorithm requires at least 4 calls. Thus, our method is optimal. We give another subdivision algorithm using only three calls to the de Casteljau algorithm. Instead of being regular, the subdivision pattern is diamond-like. Finally, we present a ``spider-like subdivision scheme producing six subtriangles in four calls to the de Casteljau algorithm.
We study the problem of finding the Lowner-John ellipsoid, i.e., an ellipsoid with minimum volume that contains a given convex set. We reformulate the problem as a generalized copositive program, and use that reformulation to derive tractable semidefinite programming approximations for instances where the set is defined by affine and quadratic inequalities. We prove that, when the underlying set is a polytope, our method never provides an ellipsoid of higher volume than the one obtained by scaling the maximum volume inscribed ellipsoid. We empirically demonstrate that our proposed method generates high-quality solutions faster than solving the problem to optimality. Furthermore, we outperform the existing approximation schemes in terms of solution time and quality. We present applications of our method to obtain piecewise-linear decision rule approximations for dynamic distributionally robust problems with random recourse, and to generate ellipsoidal approximations for the set of reachable states in a linear dynamical system when the set of allowed controls is a polytope.
We provide a comprehensive study of a natural geometric optimization problem motivated by questions in the context of satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs (MSC), we are given a graph $G$ that is embedded in Euclidean space. The edges of $G$ need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex takes some time proportional to the corresponding turn angle. Our goal is to minimize the time until all scans are completed, i.e., to compute a schedule of minimum makespan. We show that MSC is closely related to both graph coloring and the minimum (directed and undirected) cut cover problem; in particular, we show that the minimum scan time for instances in 1D and 2D lies in $Theta(log chi (G))$, while for 3D the minimum scan time is not upper bounded by $chi (G)$. We use this relationship to prove that the existence of a constant-factor approximation implies $P=NP$, even for one-dimensional instances. In 2D, we show that it is NP-hard to approximate a minimum scan cover within less than a factor of $frac{3}{2}$, even for bipartite graphs; conversely, we present a $frac{9}{2}$-approximation algorithm for this scenario. Generally, we give an $O(c)$-approximation for $k$-colored graphs with $kleq chi(G)^c$. For general metric cost functions, we provide approximation algorithms whose performance guarantee depend on the arboricity of the graph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا