Do you want to publish a course? Click here

Amplification and generation of turbulence during self-gravitating collapse

86   0   0.0 ( 0 )
 Added by Hennebelle
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The formation of astrophysical structures, such as stars, compact objects but also galaxies, entail an,enhancement of densities by many orders of magnitude which occurs through gravitational collapse. The role played by turbulence during this process is important. Turbulence generates density fluctuations, exerts a support against gravity and possibly delivers angular momentum. How turbulence exactly behave during the collapse and get amplified remains a matter of investigation. Spherical averaging of the fluid equations is carried out, leading to 1D fluid equations that describe the evolution of mean quantities in particular the mean radial velocity as well as the mean radial and transverse turbulent velocities. These equations differ from the ones usually employed in the literature. We then perform a series of 3D numerical simulations of collapsing clouds for a wide range of thermal and turbulent supports with two polytropic equation of state, $P propto rho^Gamma$, with $Gamma=1$ and 1.25. For each 3D simulations we perform a series of 1D simulations using the spherically averaged equations and with the same initial conditions. By performing a detailed comparison between 3D and 1D simulations, we can analyse in great details the observed behaviours. Altogether we find that the two approaches agree remarkably well demonstrating the validity of the inferred equations although when turbulence is initially strong, major deviations from spherical geometry certainly preclude quantitative comparisons. The detailed comparisons lead us to an estimate of the turbulent dissipation parameter that when the turbulence is initially low, is found to be in good agreement with previous estimate of non self-gravitating supersonic turbulence. abridged.



rate research

Read More

We conduct numerical experiments to determine the density probability distribution function (PDF) produced in supersonic, isothermal, self-gravitating turbulence of the sort that is ubiquitous in star-forming molecular clouds. Our experiments cover a wide range of turbulent Mach number and virial parameter, allowing us for the first time to determine how the PDF responds as these parameters vary, and we introduce a new diagnostic, the dimensionless star formation efficiency versus density ($epsilon_{rm ff}(s)$) curve, which provides a sensitive diagnostic of the PDF shape and dynamics. We show that the PDF follows a universal functional form consisting of a log-normal at low density with two distinct power law tails at higher density; the first of these represents the onset of self-gravitation, and the second reflects the onset of rotational support. Once the star formation efficiency reaches a few percent, the PDF becomes statistically steady, with no evidence for secular time-evolution at star formation efficiencies from about five to 20 percent. We show that both the Mach number and the virial parameter influence the characteristic densities at which the log-normal gives way to the first power-law, and the first to the second, and we extend (for the former) and develop (for the latter) simple theoretical models for the relationship between these density thresholds and the global properties of the turbulent medium.
93 - Siyao Xu , Alex Lazarian 2020
Externally driven interstellar turbulence plays an important role in shaping the density structure in molecular clouds. Here we study the dynamical role of internally driven turbulence in a self-gravitating molecular cloud core. Depending on the initial conditions and evolutionary stages, we find that a self-gravitating core in the presence of gravity-driven turbulence can undergo constant, decelerated, and accelerated infall, and thus has various radial velocity profiles. In the gravity-dominated central region, a higher level of turbulence results in a lower infall velocity, a higher density, and a lower mass accretion rate. As an important implication of this study, efficient reconnection diffusion of magnetic fields against the gravitational drag naturally occurs due to the gravity-driven turbulence, without invoking externally driven turbulence.
A self-similar solution for time evolution of isothermal, self-gravitating viscous disks is found under the condition that $alpha equiv alpha (H/r)$ is constant in space (where $alpha$ is the viscosity parameter and $H/r$ is the ratio of a half-thickness to radius of the disk). This solution describes a homologous collapse of a disk via self-gravity and viscosity. The disk structure and evolution is distinct in the inner and outer parts. There is a constant mass inflow in the outer portions so that the disk has flat rotation velocity, constant accretion velocity, and surface density decreasing outward as $Sigma propto r^{-1}$. In the inner portions, in contrast, mass is accumulated near the center owing to the boundary condition of no radial velocity at the origin, thereby a strong central concentration being produced; surface density varies as $Sigma propto r^{-5/3}$. Moreover, the transition radius separating the inner and outer portions increases linearly with time. The consequence of such a high condensation is briefly discussed in the context of formation of a quasar black hole.
The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is investigated using the inhomogeneous Balescu-Lenard equation expressed in terms of angle-action variables. The matrix method is implemented numerically in order to model the induced gravitational polarization. Special care is taken to account for the amplification of potential fluctuations of mutually resonant orbits and the unwinding of the induced swing amplified transients. Quantitative comparisons with ${N-}$body simulations yield consistent scalings with the number of particles and with the self-gravity of the disc: the fewer particles and the colder the disc, the faster the secular evolution. Secular evolution is driven by resonances, but does not depend on the initial phases of the disc. For a Mestel disc with ${Q sim 1.5}$, the polarization cloud around each star boosts up its secular effect by a factor of the order of a thousand or more, promoting accordingly the dynamical relevance of self-induced collisional secular evolution. The position and shape of the induced resonant ridge are found to be in very good agreement with the prediction of the Balescu-Lenard equation, which scales with the square of the susceptibility of the disc. In astrophysics, the inhomogeneous Balescu-Lenard equation may describe the secular diffusion of giant molecular clouds in galactic discs, the secular migration and segregation of planetesimals in proto-planetary discs, or even the long-term evolution of population of stars within the Galactic centre. It could be used as a valuable check of the accuracy of ${N-}$body integrators over secular timescales.
The long timescale evolution of a self-gravitating system is generically driven by two-body encounters. In many cases, the motion of the particles is primarily governed by the mean field potential. When this potential is integrable, particles move on nearly fixed orbits, which can be described in terms of angle-action variables. The mean field potential drives fast orbital motions (angles) whose associated orbits (actions) are adiabatically conserved on short dynamical timescales. The long-term stochastic evolution of the actions is driven by the potential fluctuations around the mean field and in particular by resonant two-body encounters, for which the angular frequencies of two particles are in resonance. We show that the stochastic gravitational fluctuations acting on the particles can generically be described by a correlated Gaussian noise. Using this approach, the so-called $eta$-formalism, we derive a diffusion equation for the actions in the test particle limit. We show that in the appropriate limits, this diffusion equation is equivalent to the inhomogeneous Balescu-Lenard and Landau equations. This approach provides a new view of the resonant diffusion processes associated with long-term orbital distortions. Finally, by investigating the example of the Hamiltonian Mean Field Model, we show how the present method generically allows for alternative calculations of the long-term diffusion coefficients in inhomogeneous systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا