No Arabic abstract
We conduct numerical experiments to determine the density probability distribution function (PDF) produced in supersonic, isothermal, self-gravitating turbulence of the sort that is ubiquitous in star-forming molecular clouds. Our experiments cover a wide range of turbulent Mach number and virial parameter, allowing us for the first time to determine how the PDF responds as these parameters vary, and we introduce a new diagnostic, the dimensionless star formation efficiency versus density ($epsilon_{rm ff}(s)$) curve, which provides a sensitive diagnostic of the PDF shape and dynamics. We show that the PDF follows a universal functional form consisting of a log-normal at low density with two distinct power law tails at higher density; the first of these represents the onset of self-gravitation, and the second reflects the onset of rotational support. Once the star formation efficiency reaches a few percent, the PDF becomes statistically steady, with no evidence for secular time-evolution at star formation efficiencies from about five to 20 percent. We show that both the Mach number and the virial parameter influence the characteristic densities at which the log-normal gives way to the first power-law, and the first to the second, and we extend (for the former) and develop (for the latter) simple theoretical models for the relationship between these density thresholds and the global properties of the turbulent medium.
We study density fluctuations in supersonic turbulence using both theoretical methods and numerical simulations. A theoretical formulation is developed for the probability distribution function (PDF) of the density at steady state, connecting it to the conditional statistics of the velocity divergence. Two sets of numerical simulations are carried out, using either a Riemann solver to evolve the Euler equations or a finite-difference method to evolve the Navier-Stokes (N-S) equations. After confirming the validity of our theoretical formulation with the N-S simulations, we examine the effects of dynamical processes on the PDF, showing that the nonlinear term in the divergence equation amplifies the right tail of the PDF and reduces the left one, the pressure term reduces both the right and left tails, and the viscosity term, counter-intuitively, broadens the right tail of the PDF. Despite the inaccuracy of the velocity divergence from the Riemann runs, as found in our previous work, we show that the density PDF from the Riemann runs is consistent with that from the N-S runs. Taking advantage of their much higher effective resolution, we then use the Riemann runs to study the dependence of the PDF on the Mach number, $mathcal{M}$, up to $mathcal{M}sim30$. The PDF width, $sigma_{s}$, follows the relation $sigma_{s}^2 = ln (1+b^2 {mathcal M}^2)$, with $bapprox0.38$. However, the PDF exhibits a negative skewness that increases with increasing $mathcal{M}$, so much of the growth of $sigma_{s}$ is accounted for by the growth of the left PDF tail, while the growth of the right tail tends to saturate. Thus, the usual prescription that combines a lognormal shape with the standard variance-Mach number relation greatly overestimates the right PDF tail at large $mathcal{M}$, which may have a significant impact on theoretical models of star formation.
The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. Using numerical simulations, we explore the nature of such magnetic field fluctuations, $vec{delta B}$, over a wide range of turbulent Mach numbers, $mathcal{M} = 2 - 20$ (i.e., from weak to strong compressibility), and Alfven Mach numbers, $mathcal{M}_{text{A}0} = 0.1 - 100$ (i.e., from strong to weak magnetic mean fields, $B_0$). We derive a compressible quasi-static fluctuation model from the magnetohydrodynamical (MHD) equations and show that velocity gradients parallel to the mean magnetic field give rise to compressible modes in sub-Alfvenic flows, which prevents the flow from becoming two-dimensional, as is the case in incompressible MHD turbulence. We then generalise an analytical model for the magnitude of the magnetic fluctuations to include $mathcal{M}$, and find $|vec{delta B}| = delta B = c_ssqrt{pirho_0}mathcal{M}mathcal{M}_{text{A}0}$, where $c_s$ is the sound speed and $rho_0$ is the mean density of gas. This new relation fits well in the strong $B$-field regime. We go on to study the anisotropy between the perpendicular ($ B_{perp}$) and parallel ($ B_{parallel}$) fluctuations and the mean-normalised fluctuations, which we find follow universal scaling relations, invariant of $mathcal{M}$. We provide a detailed analysis of the morphology for the $delta B_{perp}$ and $delta B_{parallel}$ probability density functions and find that eddies aligned with $B_0$ cause parallel fluctuations that reduce $B_{parallel}$ in the most anisotropic simulations. We discuss broadly the implications of our fluctuation models for magnetised gases in the interstellar medium.
The formation of astrophysical structures, such as stars, compact objects but also galaxies, entail an,enhancement of densities by many orders of magnitude which occurs through gravitational collapse. The role played by turbulence during this process is important. Turbulence generates density fluctuations, exerts a support against gravity and possibly delivers angular momentum. How turbulence exactly behave during the collapse and get amplified remains a matter of investigation. Spherical averaging of the fluid equations is carried out, leading to 1D fluid equations that describe the evolution of mean quantities in particular the mean radial velocity as well as the mean radial and transverse turbulent velocities. These equations differ from the ones usually employed in the literature. We then perform a series of 3D numerical simulations of collapsing clouds for a wide range of thermal and turbulent supports with two polytropic equation of state, $P propto rho^Gamma$, with $Gamma=1$ and 1.25. For each 3D simulations we perform a series of 1D simulations using the spherically averaged equations and with the same initial conditions. By performing a detailed comparison between 3D and 1D simulations, we can analyse in great details the observed behaviours. Altogether we find that the two approaches agree remarkably well demonstrating the validity of the inferred equations although when turbulence is initially strong, major deviations from spherical geometry certainly preclude quantitative comparisons. The detailed comparisons lead us to an estimate of the turbulent dissipation parameter that when the turbulence is initially low, is found to be in good agreement with previous estimate of non self-gravitating supersonic turbulence. abridged.
Externally driven interstellar turbulence plays an important role in shaping the density structure in molecular clouds. Here we study the dynamical role of internally driven turbulence in a self-gravitating molecular cloud core. Depending on the initial conditions and evolutionary stages, we find that a self-gravitating core in the presence of gravity-driven turbulence can undergo constant, decelerated, and accelerated infall, and thus has various radial velocity profiles. In the gravity-dominated central region, a higher level of turbulence results in a lower infall velocity, a higher density, and a lower mass accretion rate. As an important implication of this study, efficient reconnection diffusion of magnetic fields against the gravitational drag naturally occurs due to the gravity-driven turbulence, without invoking externally driven turbulence.
We present a simulation of isothermal supersonic (rms Mach number $mathcal{M}_{rm rms} sim 3$) turbulent gas with inertial particles (dust) and self-gravity in statistical steady-state, which we compare with a corresponding simulation without self-gravity. The former is in steady state, but close to gravitationally unstable, since we match the scale of the simulation box with Jeans wavelength, which provides the strongest influence of gravity on the dynamics of gas and dust without causing irreversible gravitational collapses. We find that self-gravity does not cause any significant increase in clustering of particles, regardless of particle size, but heavy particles show elevated mean velocities in the presence of self-gravity. The speed distributions are significantly shifted to higher values compared to simulations without self-gravity, but maintains the same shape.