No Arabic abstract
Graduate Teaching Assistants (GTAs) are key partners in the education of undergraduates. Given the potentially large impact GTAs can have on undergraduate student learning, it is important to provide them with appropriate preparation for teaching. But GTAs are students themselves, and not all of them desire to pursue an academic career. Fully integrating GTA preparation into the professional development of graduate students lowers the barrier to engagement so that all graduate students may benefit from the opportunity to explore teaching and its applications to many potential career paths. In this paper we describe the design and implementation of a GTA Preparation course for first-year Ph.D. students at the Georgia Tech School of Physics. Through a yearly cycle of implementation and revision, guided by the 3P Framework we developed (Pedagogy, Physics, Professional Development), the course has evolved into a robust and comprehensive professional development program that is well-received by physics graduate students.
The Engage to Excel (PCAST) report, the National Research Councils Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computations ability for connecting scientific practice to the high school science classroom.
Cookbook style laboratory tasks have long been criticised for the lack of critical and independent thought that students need in order to complete them. We present an account of how we transformed a cookbook lab to a genuine inquiry experiment in first year physics. Crucial features of the work were visits to see other teaching laboratories, understanding student preparedness and the selection of an appropriate experiment to develop. The new two session laboratory work is structured so students make decisions related to the method of a basic experiment in the first session and then have freedom to investigate any aspect they wish to in the second. Formative feedback on laboratory notebook keeping is provided by short online activities.
Students who serve as Learning Assistants (LAs) and have the opportunity to teach the content they are learning, while also studying effective teaching pedagogy, have demonstrated achievement gains in advanced content courses and positive shifts in attitudes about learning science [V. Otero, S. Pollock & N. Finkelstein, Amer J Physics 78, 11 (2010)]. Although the LA experience is also valuable for high school students, the tight schedule and credit requirements of advanced high school students limit opportunities for implementing traditional LA programs at the high school level. In order to provide high school physics students with an LA-like experience, iPads were used as tools for students to synthesize screencast video tutorials for students to access, review and evaluate. The iPads were utilized in a one-to-one tablet-to-student environment throughout the course of an entire school year. This research investigates the impact of a one-to-one iPad environment and the use of iPads to create teaching-to-learn (TtL) experiences on student agency and attitudes toward learning science. Project funded by NSF grant # DUE 934921.
We describe an undergraduate course where physics students are asked to conceive an outreach project of their own. The course alternates between the project conception and teachings about pedagogy and outreach, and ends in a public show. We describe its practical implementation and benefits. Through a student survey and an analysis of their projects, we discuss the merits and flaws of this learning-by-doing teaching approach for physics.
A recent paper by Salehi et al. claims that the differences found between major demographic groups on scores in introductory college physics tests are due to differences in pre-college preparation. No evidence is produced, however, to show that preparation differences are more causally important than any other differences. In one case, the male/female difference, the paper actually provides evidence that preparation gaps are unimportant.