Do you want to publish a course? Click here

Transforming physics laboratory work from cookbook type to genuine inquiry

138   0   0.0 ( 0 )
 Added by Kirsty Dunnett
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cookbook style laboratory tasks have long been criticised for the lack of critical and independent thought that students need in order to complete them. We present an account of how we transformed a cookbook lab to a genuine inquiry experiment in first year physics. Crucial features of the work were visits to see other teaching laboratories, understanding student preparedness and the selection of an appropriate experiment to develop. The new two session laboratory work is structured so students make decisions related to the method of a basic experiment in the first session and then have freedom to investigate any aspect they wish to in the second. Formative feedback on laboratory notebook keeping is provided by short online activities.



rate research

Read More

Students who serve as Learning Assistants (LAs) and have the opportunity to teach the content they are learning, while also studying effective teaching pedagogy, have demonstrated achievement gains in advanced content courses and positive shifts in attitudes about learning science [V. Otero, S. Pollock & N. Finkelstein, Amer J Physics 78, 11 (2010)]. Although the LA experience is also valuable for high school students, the tight schedule and credit requirements of advanced high school students limit opportunities for implementing traditional LA programs at the high school level. In order to provide high school physics students with an LA-like experience, iPads were used as tools for students to synthesize screencast video tutorials for students to access, review and evaluate. The iPads were utilized in a one-to-one tablet-to-student environment throughout the course of an entire school year. This research investigates the impact of a one-to-one iPad environment and the use of iPads to create teaching-to-learn (TtL) experiences on student agency and attitudes toward learning science. Project funded by NSF grant # DUE 934921.
358 - Takehiro Azuma 2008
Recently in the authors country Japan, the unpopularity of natural science among children has been a serious problem. Especially, physics is unpopular because physics requires mathematics. One of the reasons of this problem is that teachers themselves do not like physics. We focus our attention on the ``teachers in embryo, namely the undergraduate students in a course for school teachers. We conducted a questionnaire and a quiz on the undergraduate students in the first grade of the Department of Science Education, Ibaraki University. We report the result of the questionnaire and the quiz, and also make suggestions to improve the present situation.
404 - John M. Aiken 2013
The Engage to Excel (PCAST) report, the National Research Councils Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computations ability for connecting scientific practice to the high school science classroom.
Graduate Teaching Assistants (GTAs) are key partners in the education of undergraduates. Given the potentially large impact GTAs can have on undergraduate student learning, it is important to provide them with appropriate preparation for teaching. But GTAs are students themselves, and not all of them desire to pursue an academic career. Fully integrating GTA preparation into the professional development of graduate students lowers the barrier to engagement so that all graduate students may benefit from the opportunity to explore teaching and its applications to many potential career paths. In this paper we describe the design and implementation of a GTA Preparation course for first-year Ph.D. students at the Georgia Tech School of Physics. Through a yearly cycle of implementation and revision, guided by the 3P Framework we developed (Pedagogy, Physics, Professional Development), the course has evolved into a robust and comprehensive professional development program that is well-received by physics graduate students.
Laboratory courses are key components of most undergraduate physics programs. Lab courses often aim to achieve the following learning outcomes: developing students experimental skills, engaging students in authentic scientific practices, reinforcing concepts, and inspiring students interest and engagement in physics. Some of these outcomes can be measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS), a research-based assessment that measures students views about experimental physics. We used E-CLASS at the University of Colorado Boulder to measure learning outcomes during a course transformation process in which views about experimental physics were reflected in the learning goals. We collected over 600 student responses per semester from the large introductory laboratory course, both before and after implementing the course transformation. While we observed no statistically significant difference in overall post-instruction E-CLASS scores before and after the transformation, in the transformed course, student responses to three E-CLASS items that related to the goals of the transformation were more favorable than in the original course.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا