No Arabic abstract
Reconfigurable intelligent surfaces (RISs) are planar structures with attached electronic circuitry that enable a partially programmable communication environment. RIS operation can be regarded as nearly passive since it acts by simply reflecting the impinging traveling waves towards desired directions, thus requiring energy only for the reconfiguration of its reflective elements (REs). This paper tackles the problem of wirelessly powering RIS circuitry via control signaling. Simultaneous wireless information and power transfer (SWIPT) is considered by taking into account two basic principles: that signal quality of the control signals is sufficient for information detection, and that there is enough harvested energy for the reconfiguration. Some of the most common SWIPT receivers (time sharing, power splitting, dynamic power splitting, and antenna selection) are studied and the corresponding proposed optimization problems implementing the aforementioned principles are formulated and solved in closed form. Numerical results show the effectiveness of the proposed methods in the presence of received power fluctuations.
Large-scale antenna arrays employed by the base station (BS) constitute an essential next-generation communications technique. However, due to the constraints of size, cost, and power consumption, it is usually considered unrealistic to use a large-scale antenna array at the user side. Inspired by the emerging technique of reconfigurable intelligent surfaces (RIS), we firstly propose the concept of user-side RIS (US-RIS) for facilitating the employment of a large-scale antenna array at the user side in a cost- and energy-efficient way. In contrast to the existing employments of RIS, which belong to the family of base-station-side RISs (BSS-RISs), the US-RIS concept by definition facilitates the employment of RIS at the user side for the first time. This is achieved by conceiving a multi-layer structure to realize a compact form-factor. Furthermore, our theoretical results demonstrate that, in contrast to the existing single-layer structure, where only the phase of the signal reflected from RIS can be adjusted, the amplitude of the signal penetrating multi-layer US-RIS can also be partially controlled, which brings about a new degree of freedom (DoF) for beamformer design that can be beneficially exploited for performance enhancement. In addition, based on the proposed multi-layer US-RIS, we formulate the signal-to-noise ratio (SNR) maximization problem of US-RIS-aided communications. Due to the non-convexity of the problem introduced by this multi-layer structure, we propose a multi-layer transmit beamformer design relying on an iterative algorithm for finding the optimal solution by alternately updating each variable. Finally, our simulation results verify the superiority of the proposed multi-layer US-RIS as a compact realization of a large-scale antenna array at the user side for uplink transmission.
In this work, we investigate a novel simultaneous transmission and reflection reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output downlink system, where three practical transmission protocols, namely, energy splitting (ES), mode selection (MS), and time splitting (TS), are studied. For the system under consideration, we maximize the weighted sum rate with multiple coupled variables. To solve this optimization problem, a block coordinate descent algorithm is proposed to reformulate this problem and design the precoding matrices and the transmitting and reflecting coefficients (TARCs) in an alternate manner. Specifically, for the ES scheme, the precoding matrices are solved using the Lagrange dual method, while the TARCs are obtained using the penalty concave-convex method. Additionally, the proposed method is extended to the MS scheme by solving a mixed-integer problem. Moreover, we solve the formulated problem for the TS scheme using a one-dimensional search and the Majorization-Minimization technique. Our simulation results reveal that: 1) Simultaneous transmission and reflection RIS (STAR-RIS) can achieve better performance than reflecting-only RIS; 2) In unicast communication, TS scheme outperforms the ES and MS schemes, while in broadcast communication, ES scheme outperforms the TS and MS schemes.
Reconfigurable Intelligent Surfaces (RISs), comprising large numbers of low-cost and passive metamaterials with tunable reflection properties, have been recently proposed as an enabler for programmable radio propagation environments. However, the role of the channel conditions near the RISs on their optimizability has not been analyzed adequately. In this paper, we present an asymptotic closed-form expression for the mutual information of a multi-antenna transmitter-receiver pair in the presence of multiple RISs, in the large-antenna limit, using the random matrix and replica theories. Under mild assumptions, asymptotic expressions for the eigenvalues and the eigenvectors of the channel covariance matrices are derived. We find that, when the channel close to an RIS is correlated, for instance due to small angle spread, the communication link benefits significantly from the RIS optimization, resulting in gains that are surprisingly higher than the nearly uncorrelated case. Furthermore, when the desired reflection from the RIS departs significantly from geometrical optics, the surface can be optimized to provide robust communication links. Building on the properties of the eigenvectors of the covariance matrices, we are able to find the optimal response of the RISs in closed form, bypassing the need for brute-force optimization.
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals (UTs) to a multi-antenna base station (BS). For reducing the signaling overhead, only partial channel state information (CSI), including the instantaneous CSI between the RIS and the BS as well as the slowly varying statistical CSI between the UTs and the RIS, is exploited in our investigation. In particular, an optimization framework is proposed for jointly designing the transmit covariance matrices of the UTs and the RIS phase shift matrix to maximize the system global energy efficiency (GEE) with partial CSI. We first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, to facilitate the design of the transmit power allocation matrices and the RIS phase shifts, we derive an asymptotically deterministic equivalent of the objective function with the aid of random matrix theory. We further propose a suboptimal algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the considerable GEE gains provided by the RIS-assisted transmission scheme over the traditional baselines.
Reconfigurable Intelligent Surfaces (RISs) are recently gaining remarkable attention as a low-cost, hardware-efficient, and highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation. Their envisioned dense deployment over various obstacles of the, otherwise passive, wireless communication environment has been considered as a revolutionary means to transform them into network entities with reconfigurable properties, providing increased environmental intelligence for diverse communication objectives. One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs, which according to the current hardware designs have very limited computing and storage capabilities. In this paper, we consider a typical communication pair between two nodes that is assisted by a plurality of RISs, and devise low-complexity supervised learning approaches for the RISs phase configurations. By assuming common tunable phases in groups of each RISs unit elements, we present multi-layer perceptron Neural Network (NN) architectures that can be trained either with positioning values or the instantaneous channel coefficients. We investigate centralized and individual training of the RISs, as well as their federation, and assess their computational requirements. Our simulation results, including comparisons with the optimal phase configuration scheme, showcase the benefits of adopting individual NNs at RISs for the link budget performance boosting.