Do you want to publish a course? Click here

Simultaneous Transmission and Reflection Reconfigurable Intelligent Surface Assisted MIMO Systems

170   0   0.0 ( 0 )
 Added by Hehao Niu Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we investigate a novel simultaneous transmission and reflection reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output downlink system, where three practical transmission protocols, namely, energy splitting (ES), mode selection (MS), and time splitting (TS), are studied. For the system under consideration, we maximize the weighted sum rate with multiple coupled variables. To solve this optimization problem, a block coordinate descent algorithm is proposed to reformulate this problem and design the precoding matrices and the transmitting and reflecting coefficients (TARCs) in an alternate manner. Specifically, for the ES scheme, the precoding matrices are solved using the Lagrange dual method, while the TARCs are obtained using the penalty concave-convex method. Additionally, the proposed method is extended to the MS scheme by solving a mixed-integer problem. Moreover, we solve the formulated problem for the TS scheme using a one-dimensional search and the Majorization-Minimization technique. Our simulation results reveal that: 1) Simultaneous transmission and reflection RIS (STAR-RIS) can achieve better performance than reflecting-only RIS; 2) In unicast communication, TS scheme outperforms the ES and MS schemes, while in broadcast communication, ES scheme outperforms the TS and MS schemes.



rate research

Read More

This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals (UTs) to a multi-antenna base station (BS). For reducing the signaling overhead, only partial channel state information (CSI), including the instantaneous CSI between the RIS and the BS as well as the slowly varying statistical CSI between the UTs and the RIS, is exploited in our investigation. In particular, an optimization framework is proposed for jointly designing the transmit covariance matrices of the UTs and the RIS phase shift matrix to maximize the system global energy efficiency (GEE) with partial CSI. We first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, to facilitate the design of the transmit power allocation matrices and the RIS phase shifts, we derive an asymptotically deterministic equivalent of the objective function with the aid of random matrix theory. We further propose a suboptimal algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the considerable GEE gains provided by the RIS-assisted transmission scheme over the traditional baselines.
Multiple-input multiple-output (MIMO) signaling is one of the key technologies of current mobile communication systems. However, the complex and expensive radio frequency (RF) chains have always limited the increase of MIMO scale. In this paper, we propose a MIMO transmission architecture based on a dual-polarized reconfigurable intelligent surface (RIS), which can directly achieve modulation and transmission of multichannel signals without the need for conventional RF chains. Compared with previous works, the proposed architecture can improve the integration of RIS-based transmission systems. A prototype of the dual-polarized RIS-based MIMO transmission system is built and the experimental results confirm the feasibility of the proposed architecture. The dual-polarized RIS-based MIMO transmission architecture provides a promising solution for realizing low-cost ultra-massive MIMO towards future networks.
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived based on maximum ratio transmission (MRT) and additive quantization noise model (AQNM), and the rate maximization problem is solved by particle swarm optimization (PSO) method under both continuous phase shifts (CPSs) and discrete phase shifts (DPSs) at the RIS. Simulation results show that the downlink sum achievable rate tends to a constant with the increase of the number of quantization bits of DACs, and four quantization bits are enough to capture a large portion of the performance of the ideal perfect DACs case.
184 - Zhaorui Wang , Liang Liu , 2020
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studies the feasibility of adopting the intelligent reflecting surface (IRS) to further improve the beamforming gain of the uplink communications in a massive MIMO system. Under such a novel system, the central question lies in whether the IRS is able to enhance the network throughput as expected, if the channel estimation overhead is taken into account. In this paper, we first show that the favorable propagation property for the conventional massive MIMO system without IRS, i.e., the channels of arbitrary two users are orthogonal, no longer holds for the IRS-assisted massive MIMO system, due to its special channel property that each IRS element reflects the signals from all the users to the BS via the same channel. As a result, the maximal-ratio combining (MRC) receive beamforming strategy leads to strong inter-user interference and thus even lower user rates than those of the massive MIMO system without IRS. To tackle this challenge, we propose a novel strategy for zero-forcing (ZF) beamforming design at the BS and reflection coefficients design at the IRS to efficiently null the inter-user interference. Under our proposed strategy, it is rigorously shown that even if the channel estimation overhead is considered, the IRS-assisted massive MIMO system can always achieve higher throughput compared to its counterpart without IRS, despite the fact that the favorable propagation property no longer holds.
In frequency division duplexing systems, the base station (BS) acquires downlink channel state information (CSI) via channel feedback, which has not been adequately investigated in the presence of RIS. In this study, we examine the limited channel feedback scheme by proposing a novel cascaded codebook and an adaptive bit partitioning strategy. The RIS segments the channel between the BS and mobile station into two sub-channels, each with line-of-sight (LoS) and non-LoS (NLoS) paths. To quantize the path gains, the cascaded codebook is proposed to be synthesized by two sub-codebooks whose codeword is cascaded by LoS and NLoS components. This enables the proposed cascaded codebook to cater the different distributions of LoS and NLoS path gains by flexibly using different feedback bits to design the codeword structure. On the basis of the proposed cascaded codebook, we derive an upper bound on ergodic rate loss with maximum ratio transmission and show that the rate loss can be cut down by optimizing the feedback bit allocation during codebook generation. To minimize the upper bound, we propose a bit partitioning strategy that is adaptive to diverse environment and system parameters. Extensive simulations are presented to show the superiority and robustness of the cascaded codebook and the efficiency of the adaptive bit partitioning scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا