Do you want to publish a course? Click here

Chiral Phonons in Moire Superlattices

117   0   0.0 ( 0 )
 Added by Nishchay Suri
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{2z}$ symmetry on the moire length scale. Within elastic theory, we provide a complete classification of van der Waals heterostructures in respect to hosting moire chiral phonons and discuss their emergence in twisted bilayer MoS$_2$ as an example. The formation of the chiral phonons can be qualitatively understood using an effective model, which emphasizes their origin in the energy difference between stacking domains. Since moire chiral phonons are highly tunable, with excitation energies in only a few meV, and moire scale wavelengths, they might find potential applications in phononic twistronic devices.



rate research

Read More

Transition metal dichalcogenide (TMD) moire heterostructures provide an ideal platform to explore the extended Hubbard model1 where long-range Coulomb interactions play a critical role in determining strongly correlated electron states. This has led to experimental observations of Mott insulator states at half filling2-4 as well as a variety of extended Wigner crystal states at different fractional fillings5-9. Microscopic understanding of these emerging quantum phases, however, is still lacking. Here we describe a novel scanning tunneling microscopy (STM) technique for local sensing and manipulation of correlated electrons in a gated WS2/WSe2 moire superlattice that enables experimental extraction of fundamental extended Hubbard model parameters. We demonstrate that the charge state of local moire sites can be imaged by their influence on STM tunneling current, analogous to the charge-sensing mechanism in a single-electron transistor. In addition to imaging, we are also able to manipulate the charge state of correlated electrons. Discharge cascades of correlated electrons in the moire superlattice are locally induced by ramping the STM bias, thus enabling the nearest-neighbor Coulomb interaction (UNN) to be estimated. 2D mapping of the moire electron charge states also enables us to determine onsite energy fluctuations at different moire sites. Our technique should be broadly applicable to many semiconductor moire systems, offering a powerful new tool for microscopic characterization and control of strongly correlated states in moire superlattices.
We report the nanoscale conductivity imaging of correlated electronic states in angle-aligned WSe2/WS2 heterostructures using microwave impedance microscopy. The noncontact microwave probe allows us to observe the Mott insulating state with one hole per moire unit cell that persists for temperatures up to 150 K, consistent with other characterization techniques. In addition, we identify for the first time a Mott insulating state at one electron per moire unit cell. Appreciable inhomogeneity of the correlated states is directly visualized in the hetero-bilayer region, indicative of local disorders in the moire superlattice potential or electrostatic doping. Our work provides important insights on 2D moire systems down to the microscopic level.
74 - F. Lyzwa , A. Chan , J. Khmaladze 2019
We report the observation of low-frequency modes in the Raman spectra of thin-film superlattices of the high-temperature superconductor YBa$ _{2} $Cu$ _{3} $O$ _{7-delta} $ and various manganite perovskites. Our study shows that these modes are caused by the backfolding of acoustic phonons due to the additional periodicity introduced by the superlattice. Such modes were previously only observed for ultra-pure semiconductor superlattices. They can be used to determine the bilayer thickness of the superlattice and its speed of sound. Moreover, we use the spatial resolution of Raman microscopy to map the film thickness inhomogeneity across a sample, making these modes a useful tool to characterize thin-film superlattices.
Moire engineering has recently emerged as a capable approach to control quantum phenomena in condensed matter systems. In van der Waals heterostructures, moire patterns can be formed by lattice misorientation between adjacent atomic layers, creating long range electronic order. To date, moire engineering has been executed solely in stacked van der Waals multilayers. Herein, we describe our discovery of electronic moire patterns in films of a prototypical magnetoresistive oxide La0.67Sr0.33MnO3 (LSMO) epitaxially grown on LaAlO3 (LAO) substrates. Using scanning probe nano-imaging, we observe microscopic moire profiles attributed to the coexistence and interaction of two distinct incommensurate patterns of strain modulation within these films. The net effect is that both electronic conductivity and ferromagnetism of LSMO are modulated by periodic moire textures extending over mesoscopic scales. Our work provides an entirely new route with potential to achieve spatially patterned electronic textures on demand in strained epitaxial materials.
We present a systematic classification and analysis of possible pairing instabilities in graphene-based moire superlattices. Motivated by recent experiments on twisted double-bilayer graphene showing signs of triplet superconductivity, we analyze both singlet and triplet pairing separately, and describe how these two channels behave close to the limit where the system is invariant under separate spin rotations in the two valleys, realizing an SU(2)$_+$ $times$ SU(2)$_-$ symmetry. Further, we discuss the conditions under which singlet and triplet can mix via two nearly degenerate transitions, and how the different pairing states behave when an external magnetic field is applied. The consequences of the additional microscopic or emergent approximate symmetries relevant for superconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride are described in detail. We also analyze which of the pairing states can arise in mean-field theory and study the impact of corrections coming from ferromagnetic fluctuations. For instance, we show that, close to the parameters of mean-field theory, a nematic mixed singlet-triplet state emerges. Our study illustrates that graphene superlattices provide a rich platform for exotic superconducting states, and allow for the admixture of singlet and triplet pairing even in the absence of spin-orbit coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا