Do you want to publish a course? Click here

Backfolded acoustic phonons in metal-oxide superlattices

75   0   0.0 ( 0 )
 Added by Ben Mallett
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the observation of low-frequency modes in the Raman spectra of thin-film superlattices of the high-temperature superconductor YBa$ _{2} $Cu$ _{3} $O$ _{7-delta} $ and various manganite perovskites. Our study shows that these modes are caused by the backfolding of acoustic phonons due to the additional periodicity introduced by the superlattice. Such modes were previously only observed for ultra-pure semiconductor superlattices. They can be used to determine the bilayer thickness of the superlattice and its speed of sound. Moreover, we use the spatial resolution of Raman microscopy to map the film thickness inhomogeneity across a sample, making these modes a useful tool to characterize thin-film superlattices.



rate research

Read More

A topological superconductor features at its boundaries and vortices Majorana fermions, which are potentially applicable for topological quantum computations. The scarcity of the known experimentally verified physical systems with topological superconductivity, time-reversal invariant ones in particular, is giving rise to a strong demand for identifying new candidate materials. In this research, we study a heterostructure consisting of a transition metal oxide two-dimensional electron gas (2DEG) sandwiched by insulators near the paraelectric (PE) / ferroelectric (FE) phase transition. Its relevant characteristics is the combination of the transition metal spin-orbit coupling and the soft odd-parity phonons arising from the ferroelectric fluctuation; it gives rise to the fluctuating Rashba effect, which can mediate the pairing interaction for time-reversal invariant topological superconductivity. As the PE / FE phase transition can be driven by applying strain on the heterostructure, this system provides a tunable electron-phonon coupling. Through the first-principle calculations on the (001) [BaOsO3][BaTiO3]4, we find such electron-phonon coupling to be strong over a wide range of applied tensile bi-axial strain in the monolayer BaOsO3 sandwiched between the (001) BaTiO3, hence qualifying it as a good candidate material. Furthermore, the stability of topological superconductivity in this material is enhanced by its orbital physics that gives rise to the anisotropic dispersion.
We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{2z}$ symmetry on the moire length scale. Within elastic theory, we provide a complete classification of van der Waals heterostructures in respect to hosting moire chiral phonons and discuss their emergence in twisted bilayer MoS$_2$ as an example. The formation of the chiral phonons can be qualitatively understood using an effective model, which emphasizes their origin in the energy difference between stacking domains. Since moire chiral phonons are highly tunable, with excitation energies in only a few meV, and moire scale wavelengths, they might find potential applications in phononic twistronic devices.
548 - S. Lee , C. Tarantini , P. Gao 2013
Significant progress has been achieved in fabricating high quality bulk and thinfilm iron-based superconductors. In particular, artificial layered pnictide superlattices offer the possibility of tailoring the superconducting properties and understanding the mechanism of the superconductivity itself. For high field applications, large critical current densities (Jc) and irreversibility fields (Hirr) are indispensable along all crystal directions. On the other hand, the development of superconducting devices such as tunnel junctions requires multilayered heterostructures. Here we show that artificially engineered undoped Ba-122 / Co doped Ba-122 compositionally modulated superlattices produce ab-aligned nanoparticle arrays. These layer and self-assemble along c-axis aligned defects, and combine to produce very large Jc and Hirr enhancements over a wide angular range. We also demonstrate a structurally modulated SrTiO3 (STO) / Co doped Ba-122 superlattice with sharp interfaces. Success in superlattice fabrication involving pnictides will aid the progress of heterostructured systems exhibiting novel interfacial phenomena and device applications.
85 - W.M.Li , J.F.Zhao , L.P.Cao 2018
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics.High Tc cuprates crystallize into layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high Tc cuprates are elongated along the c axis, leading to a 3dx2-y2 orbital at the top of the band structure wherein the doped holes reside.This scenario gives rise to two dimensional characteristics in high Tc cuprates that favor d wave pairing symmetry. Here we report superconductivity in a cuprate Ba2CuO4-y wherein the local octahedron is in a very exceptional compressed version.The Ba2CuO4-y compound was synthesized at high pressure at high temperatures, and shows bulk superconductivity with critical temperature Tc above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the Tc for the isostructural counterparts based on classical La2CuO4. X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron the 3d3z2-r2 orbital will be lifted above the 3dx2-y2 orbital, leading to significant three dimensional nature in addition to the conventional 3dx2-y2 orbital. This work sheds important new light on advancing our comprehensive understanding of the superconducting mechanism of high Tc in cuprate materials.
We present the results of a neutron scattering study of the high energy phonons in the superconducting graphite intercalation compound CaC$_6$. The study was designed to address hitherto unexplored aspects of the lattice dynamics in CaC$_6$, and in particular any renormalization of the out-of-plane and in-plane graphitic phonon modes. We present a detailed comparison between the data and the results of density functional theory (DFT). A description is given of the analysis methods developed to account for the highly-textured nature of the samples. The DFT calculations are shown to provide a good description of the general features of the experimental data. This is significant in light of a number of striking disagreements in the literature between other experiments and DFT on CaC$_6$. The results presented here demonstrate that the disagreements are not due to any large inaccuracies in the calculated phonon frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا