Do you want to publish a course? Click here

Ontology-Enhanced Slot Filling

100   0   0.0 ( 0 )
 Added by Yuhao Ding
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Slot filling is a fundamental task in dialog state tracking in task-oriented dialog systems. In multi-domain task-oriented dialog system, user utterances and system responses may mention multiple named entities and attributes values. A system needs to select those that are confirmed by the user and fill them into destined slots. One difficulty is that since a dialogue session contains multiple system-user turns, feeding in all the tokens into a deep model such as BERT can be challenging due to limited capacity of input word tokens and GPU memory. In this paper, we investigate an ontology-enhanced approach by matching the named entities occurred in all dialogue turns using ontology. The matched entities in the previous dialogue turns will be accumulated and encoded as additional inputs to a BERT-based dialogue state tracker. In addition, our improvement includes ontology constraint checking and the correction of slot name tokenization. Experimental results showed that our ontology-enhanced dialogue state tracker improves the joint goal accuracy (slot F1) from 52.63% (91.64%) to 53.91% (92%) on MultiWOZ 2.1 corpus.



rate research

Read More

Automatically inducing high quality knowledge graphs from a given collection of documents still remains a challenging problem in AI. One way to make headway for this problem is through advancements in a related task known as slot filling. In this task, given an entity query in form of [Entity, Slot, ?], a system is asked to fill the slot by generating or extracting the missing value exploiting evidence extracted from relevant passage(s) in the given document collection. The recent works in the field try to solve this task in an end-to-end fashion using retrieval-based language models. In this paper, we present a novel approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. Our model reports large improvements on both T-REx and zsRE slot filling datasets, improving both passage retrieval and slot value generation, and ranking at the top-1 position in the KILT leaderboard. Moreover, we demonstrate the robustness of our system showing its domain adaptation capability on a new variant of the TACRED dataset for slot filling, through a combination of zero/few-shot learning. We release the source code and pre-trained models.
150 - Dian Yu , Luheng He , Yuan Zhang 2021
Few-shot learning arises in important practical scenarios, such as when a natural language understanding system needs to learn new semantic labels for an emerging, resource-scarce domain. In this paper, we explore retrieval-based methods for intent classification and slot filling tasks in few-shot settings. Retrieval-based methods make predictions based on labeled examples in the retrieval index that are similar to the input, and thus can adapt to new domains simply by changing the index without having to retrain the model. However, it is non-trivial to apply such methods on tasks with a complex label space like slot filling. To this end, we propose a span-level retrieval method that learns similar contextualized representations for spans with the same label via a novel batch-softmax objective. At inference time, we use the labels of the retrieved spans to construct the final structure with the highest aggregated score. Our method outperforms previous systems in various few-shot settings on the CLINC and SNIPS benchmarks.
Intent detection and slot filling are two main tasks in natural language understanding (NLU) for identifying users needs from their utterances. These two tasks are highly related and often trained jointly. However, most previous works assume that each utterance only corresponds to one intent, ignoring the fact that a user utterance in many cases could include multiple intents. In this paper, we propose a novel Self-Distillation Joint NLU model (SDJN) for multi-intent NLU. First, we formulate multiple intent detection as a weakly supervised problem and approach with multiple instance learning (MIL). Then, we design an auxiliary loop via self-distillation with three orderly arranged decoders: Initial Slot Decoder, MIL Intent Decoder, and Final Slot Decoder. The output of each decoder will serve as auxiliary information for the next decoder. With the auxiliary knowledge provided by the MIL Intent Decoder, we set Final Slot Decoder as the teacher model that imparts knowledge back to Initial Slot Decoder to complete the loop. The auxiliary loop enables intents and slots to guide mutually in-depth and further boost the overall NLU performance. Experimental results on two public multi-intent datasets indicate that our model achieves strong performance compared to others.
As an essential task in task-oriented dialog systems, slot filling requires extensive training data in a certain domain. However, such data are not always available. Hence, cross-domain slot filling has naturally arisen to cope with this data scarcity problem. In this paper, we propose a Coarse-to-fine approach (Coach) for cross-domain slot filling. Our model first learns the general pattern of slot entities by detecting whether the tokens are slot entities or not. It then predicts the specific types for the slot entities. In addition, we propose a template regularization approach to improve the adaptation robustness by regularizing the representation of utterances based on utterance templates. Experimental results show that our model significantly outperforms state-of-the-art approaches in slot filling. Furthermore, our model can also be applied to the cross-domain named entity recognition task, and it achieves better adaptation performance than other existing baselines. The code is available at https://github.com/zliucr/coach.
Slot filling and intent detection have become a significant theme in the field of natural language understanding. Even though slot filling is intensively associated with intent detection, the characteristics of the information required for both tasks are different while most of those approaches may not fully aware of this problem. In addition, balancing the accuracy of two tasks effectively is an inevitable problem for the joint learning model. In this paper, a Continual Learning Interrelated Model (CLIM) is proposed to consider semantic information with different characteristics and balance the accuracy between intent detection and slot filling effectively. The experimental results show that CLIM achieves state-of-the-art performace on slot filling and intent detection on ATIS and Snips.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا