Do you want to publish a course? Click here

Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d $ge$ 3

79   0   0.0 ( 0 )
 Added by Alejandro Rivera
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For the Bargmann-Fock field on R d with d $ge$ 3, we prove that the critical level c (d) of the percolation model formed by the excursion sets {f $ge$ } is strictly positive. This implies that for every sufficiently close to 0 (in particular for the nodal hypersurfaces corresponding to the case = 0), {f = } contains an unbounded connected component that visits most of the ambient space. Our findings actually hold for a more general class of positively correlated smooth Gaussian fields with rapid decay of correlations. The results of this paper show that the behaviour of nodal hypersurfaces of these Gaussian fields in R d for d $ge$ 3 is very different from the behaviour of nodal lines of their two-dimensional analogues. Contents



rate research

Read More

We consider the Poisson Boolean percolation model in $mathbb{R}^2$, where the radii of each ball is independently chosen according to some probability measure with finite second moment. For this model, we show that the two thresholds, for the existence of an unbounded occupied and an unbounded vacant component, coincide. This complements a recent study of the sharpness of the phase transition in Poisson Boolean percolation by the same authors. As a corollary it follows that for Poisson Boolean percolation in $mathbb{R}^d$, for any $dge2$, finite moment of order $d$ is both necessary and sufficient for the existence of a nontrivial phase transition for the vacant set.
We derive a covariance formula for the class of `topological events of smooth Gaussian fields on manifolds; these are events that depend only on the topology of the level sets of the field, for example (i) crossing events for level or excursion sets, (ii) events measurable with respect to the number of connected components of level or excursion sets of a given diffeomorphism class, and (iii) persistence events. As an application of the covariance formula, we derive strong mixing bounds for topological events, as well as lower concentration inequalities for additive topological functionals (e.g. the number of connected components) of the level sets that satisfy a law of large numbers. The covariance formula also gives an alternate justification of the Harris criterion, which conjecturally describes the boundary of the percolation university class for level sets of stationary Gaussian fields. Our work is inspired by a recent paper by Rivera and Vanneuville, in which a correlation inequality was derived for certain topological events on the plane, as well as by an old result of Piterbarg, in which a similar covariance formula was established for finite-dimensional Gaussian vectors.
242 - Enrique Andjel 2011
We prove a shape theorem for the set of infected individuals in a spatial epidemic model with 3 states (susceptible-infected-recovered) on ${mathbb Z}^d,dge 3$, when there is no extinction of the infection. For this, we derive percolation estimates (using dynamic renormalization techniques) for a locally dependent random graph in correspondence with the epidemic model.
We study the small deviation probabilities of a family of very smooth self-similar Gaussian processes. The canonical process from the family has the same scaling property as standard Brownian motion and plays an important role in the study of zeros of random polynomials. Our estimates are based on the entropy method, discovered in Kuelbs and Li (1992) and developed further in Li and Linde (1999), Gao (2004), and Aurzada et al. (2009). While there are several ways to obtain the result w.r.t. the $L_2$ norm, the main contribution of this paper concerns the result w.r.t. the supremum norm. In this connection, we develop a tool that allows to translate upper estimates for the entropy of an operator mapping into $L_2[0,1]$ by those of the operator mapping into $C[0,1]$, if the image of the operator is in fact a Holder space. The results are further applied to the entropy of function classes, generalizing results of Gao et al. (2010).
The purpose of this paper is extend recent results of Bonder-Groisman and Foondun-Nualart to the stochastic wave equation. In particular, a suitable integrability condition for non-existence of global solutions is derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا