Do you want to publish a course? Click here

Small deviations for a family of smooth Gaussian processes

120   0   0.0 ( 0 )
 Added by Frank Aurzada
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We study the small deviation probabilities of a family of very smooth self-similar Gaussian processes. The canonical process from the family has the same scaling property as standard Brownian motion and plays an important role in the study of zeros of random polynomials. Our estimates are based on the entropy method, discovered in Kuelbs and Li (1992) and developed further in Li and Linde (1999), Gao (2004), and Aurzada et al. (2009). While there are several ways to obtain the result w.r.t. the $L_2$ norm, the main contribution of this paper concerns the result w.r.t. the supremum norm. In this connection, we develop a tool that allows to translate upper estimates for the entropy of an operator mapping into $L_2[0,1]$ by those of the operator mapping into $C[0,1]$, if the image of the operator is in fact a Holder space. The results are further applied to the entropy of function classes, generalizing results of Gao et al. (2010).



rate research

Read More

Let $X^{(delta)}$ be a Wishart process of dimension $delta$, with values in the set of positive matrices of size $m$. We are interested in the large deviations for a family of matrix-valued processes ${delta^{-1} X_t^{(delta)}, t leq 1 }$ as $delta$ tends to infinity. The process $X^{(delta)}$ is a solution of a stochastic differential equation with a degenerate diffusion coefficient. Our approach is based upon the introduction of exponential martingales. We give some applications to large deviations for functionals of the Wishart processes, for example the set of eigenvalues.
We derive a covariance formula for the class of `topological events of smooth Gaussian fields on manifolds; these are events that depend only on the topology of the level sets of the field, for example (i) crossing events for level or excursion sets, (ii) events measurable with respect to the number of connected components of level or excursion sets of a given diffeomorphism class, and (iii) persistence events. As an application of the covariance formula, we derive strong mixing bounds for topological events, as well as lower concentration inequalities for additive topological functionals (e.g. the number of connected components) of the level sets that satisfy a law of large numbers. The covariance formula also gives an alternate justification of the Harris criterion, which conjecturally describes the boundary of the percolation university class for level sets of stationary Gaussian fields. Our work is inspired by a recent paper by Rivera and Vanneuville, in which a correlation inequality was derived for certain topological events on the plane, as well as by an old result of Piterbarg, in which a similar covariance formula was established for finite-dimensional Gaussian vectors.
We study two one-parameter families of point processes connected to random matrices: the Sine_beta and Sch_tau processes. The first one is the bulk point process limit for the Gaussian beta-ensemble. For beta=1, 2 and 4 it gives the limit of the GOE, GUE and GSE models of random matrix theory. In particular, for beta=2 it is a determinantal point process conjectured to have similar behavior to the critical zeros of the Riemann zeta-function. The second process can be obtained as the bulk scaling limit of the spectrum of certain discrete one-dimensional random Schrodinger operators. Both processes have asymptotically constant average density, in our normalization one expects close to lambda/(2pi) points in a large interval of length lambda. Our main results are large deviation principles for the average densities of the processes, essentially we compute the asymptotic probability of seeing an unusual average density in a large interval. Our approach is based on the representation of the counting functions of these processes using stochastic differential equations. We also prove path level large deviation principles for the arising diffusions. Our techniques work for the full range of parameter values. The results are novel even in the classical beta=1, 2 and 4 cases for the Sine_beta process. They are consistent with the existing rigorous results on large gap probabilities and confirm the physical predictions made using log-gas arguments.
302 - Tiejun Li , Feng Lin 2015
We formulate the large deviations for a class of two scale chemical kinetic processes motivated from biological applications. The result is successfully applied to treat a genetic switching model with positive feedbacks. The corresponding Hamiltonian is convex with respect to the momentum variable as a by-product of the large deviation theory. This property ensures its superiority in the rare event simulations compared with the result obtained by formal WKB asymptotics. The result is of general interest to understand the large deviations for multiscale problems.
We consider a class of tempered subordinators, namely a class of subordinators with one-dimensional marginal tempered distributions which belong to a family studied in [3]. The main contribution in this paper is a non-central moderate deviations result. More precisely we mean a class of large deviation principles that fill the gap between the (trivial) weak convergence of some non-Gaussian identically distributed random variables to their common law, and the convergence of some other related random variables to a constant. Some other minor results concern large deviations for the inverse of the tempered subordinators considered in this paper; actually, in some results, these inverse processes appear as random time-changes of other independent processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا