No Arabic abstract
We report on a systematic comparative study of the spin Hall efficiency between highly face-centered cubic (fcc)-textured Pt-Al alloy films grown on MgO(001) and poorly-crystallized Pt-Al alloy films grown on SiO$_2$. Using CoFeB as the detector, we show that for Al compositions centering around $x = 25$, mainly L1$_{2}$ ordered Pt$_{100-x}$Al$_x$ alloy films grown on MgO exhibit outstanding charge-spin conversion efficiency. For Pt$_{78}$Al$_{22}$/CoFeB bilayer on MgO, we obtain damping-like spin Hall efficiency as high as $xi_textrm{DL} sim +0.20$ and expect up to seven-fold reduction of power consumption compared to the polycrystalline bilayer of the same Al composition on SiO$_2$. This work demonstrates that improving the crystallinity of fcc Pt-based alloys is a crucial step for achieving large spin Hall efficiency and low power consumption in this material class.
The ability to synthesis well-ordered two-dimensional materials under ultra-high vacuum and directly characterize them by other techniques in-situ can greatly advance our current understanding on their physical and chemical properties. In this paper, we demonstrate that iso-oriented {alpha}-MoO3 films with as low as single monolayer thickness can be reproducibly grown on SrTiO3(001) (STO) substrates by molecular beam epitaxy ( (010)MoO3 || (001)STO, [100]MoO3 || [100]STO or [010]STO) through a self-limiting process. While one in-plane lattice parameter of the MoO3 is very close to that of the SrTiO3 (aMoO3 = 3.96 {AA}, aSTO = 3.905 {AA}), the lattice mismatch along other direction is large (~5%, cMoO3 = 3.70 {AA}), which leads to relaxation as clearly observed from the splitting of streaks in reflection high-energy electron diffraction (RHEED) patterns. A narrow range in the growth temperature is found to be optimal for the growth of monolayer {alpha}-MoO3 films. Increasing deposition time will not lead to further increase in thickness, which is explained by a balance between deposition and thermal desorption due to the weak van der Waals force between {alpha}-MoO3 layers. Lowering growth temperature after the initial iso-oriented {alpha}-MoO3 monolayer leads to thicker {alpha}-MoO3(010) films with excellent crystallinity.
Whether {alpha}double prime-Fe16N2 possesses a giant saturation magnetization (Ms) has been a daunting problem among magnetic researchers for almost 40 years, mainly due to the unshakable faith of famous Slater-Pauling (SP) curve and poor consistency on evaluating its Ms. Here we demonstrate that, using epitaxy and mis-fit strain imposed by an underlying substrate, the in-plane lattice constant of Fe16N2 thin films can be fine tuned to create favorable conditions for exceptionally large saturation magnetization. Combined study using polarized neutron reflectometry and X-ray diffraction shows that with increasing strain at the interface the Ms of these film can be changed over a broad range, from ~2.1T (non-high Ms) up to ~3.1T (high Ms). We suggest that the equilibrium in-plane lattice constant of Fe16N2 sits in the vicinity of the spin crossover point, in which a transition between low spin to high spin configuration of Fe sites can be realized with sensitive adjustment of crystal structure.
We experimentally investigate the current-induced magnetization reversal in Pt/[Co/Ni]$_3$/Al multilayers combining the anomalous Hall effect and magneto-optical Kerr effect techniques in crossbar geometry. The magnetization reversal occurs through nucleation and propagation of a domain of opposite polarity for a current density of the order of 0.3 TA/m$^2$. In these experiments we demonstrate a full control of each stage: i)the {O}rsted field controls the domain nucleation and ii) domain-wall propagation occurs by spin torque from the Pt spin Hall effect. This scenario requires an in-plane magnetic field to tune the domain wall center orientation along the current for efficient domain wall propagation. Indeed, as nucleated, domain walls are chiral and Neel like due to the interfacial Dzyaloshinskii-Moriya interaction.
Crystalline Fe3O4/NiO bilayers were grown on MgO(001) substrates using reactive molecular beam epitaxy to investigate their structural properties and their morphology. The film thickness either of the Fe3O4 film or of the NiO film has been varied to shed light on the relaxation of the bilayer system. The surface properties as studied by x-ray photo electron spectroscopy and low energy electron diffraction show clear evidence of stoichiometric well-ordered film surfaces. Based on the kinematic approach x-ray diffraction experiments were completely analyzed. As a result the NiO films grow pseudomorphic in the investigated thickness range (up to 34nm) while the Fe3O4 films relax continuously up to the thickness of 50nm. Although all diffraction data show well developed Laue fringes pointing to oxide films of very homogeneous thickness, the Fe3O4-NiO interface roughens continuously up to 1nm root-mean-square roughness with increasing NiO film thickness while the Fe3O4 surface is very smooth independent on the Fe3O4 film thickness. Finally, the Fe3O4-NiO interface spacing is similar to the interlayer spacing of the oxide films while the NiO-MgO interface is expanded.
We have quantitatively studied the spin-orbit torque purely generated by the spin Hall effect in a wide range of temperatures by intensionally eliminating the Rashba spin-orbit torque using Pt/Co/Pt trilayers with asymmetric thicknesses of the top and bottom Pt layers. The vanishingly small contribution from the Rashba effect has been confirmed through the vector measurements of the current-induced effective fields. In order to precisely determine the value of the spin Hall torque, the complete cancelation of the spin Hall torque has been verified by fabricating symmetric Pt/Co/Pt structure on SiO2 and Gd3Ga5O12 (GGG) substrates. Despite of the complete cance- lation on the GGG substrate, the spin Hall torque cannot be completely canceled out even when the top and bottom Pt layers have same thicknesses on the SiO2 substrate, which suggests that Pt/Co/Pt trilayers on a GGG substrate is a suitable system for precise measurements of the spin Hall torque. The result of the vector measurements on Pt/Co/Pt/GGG from 300 to 10 K shows that the spin Hall torque is almost independent of temperature, which is quantitatively reproduced under the assumption of the temperature-independent spin Hall angle of Pt.