Do you want to publish a course? Click here

Online Multi-Granularity Distillation for GAN Compression

146   0   0.0 ( 0 )
 Added by Jie Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generative Adversarial Networks (GANs) have witnessed prevailing success in yielding outstanding images, however, they are burdensome to deploy on resource-constrained devices due to ponderous computational costs and hulking memory usage. Although recent efforts on compressing GANs have acquired remarkable results, they still exist potential model redundancies and can be further compressed. To solve this issue, we propose a novel online multi-granularity distillation (OMGD) scheme to obtain lightweight GANs, which contributes to generating high-fidelity images with low computational demands. We offer the first attempt to popularize single-stage online distillation for GAN-oriented compression, where the progressively promoted teacher generator helps to refine the discriminator-free based student generator. Complementary teacher generators and network layers provide comprehensive and multi-granularity concepts to enhance visual fidelity from diverse dimensions. Experimental results on four benchmark datasets demonstrate that OMGD successes to compress 40x MACs and 82.5X parameters on Pix2Pix and CycleGAN, without loss of image quality. It reveals that OMGD provides a feasible solution for the deployment of real-time image translation on resource-constrained devices. Our code and models are made public at: https://github.com/bytedance/OMGD.



rate research

Read More

This paper presents a novel knowledge distillation based model compression framework consisting of a student ensemble. It enables distillation of simultaneously learnt ensemble knowledge onto each of the compressed student models. Each model learns unique representations from the data distribution due to its distinct architecture. This helps the ensemble generalize better by combining every models knowledge. The distilled students and ensemble teacher are trained simultaneously without requiring any pretrained weights. Moreover, our proposed method can deliver multi-compressed students with single training, which is efficient and flexible for different scenarios. We provide comprehensive experiments using state-of-the-art classification models to validate our frameworks effectiveness. Notably, using our framework a 97% compressed ResNet110 student model managed to produce a 10.64% relative accuracy gain over its individual baseline training on CIFAR100 dataset. Similarly a 95% compressed DenseNet-BC(k=12) model managed a 8.17% relative accuracy gain.
Previous Online Knowledge Distillation (OKD) often carries out mutually exchanging probability distributions, but neglects the useful representational knowledge. We therefore propose Multi-view Contrastive Learning (MCL) for OKD to implicitly capture correlations of feature embeddings encoded by multiple peer networks, which provide various views for understanding the input data instances. Benefiting from MCL, we can learn a more discriminative representation space for classification than previous OKD methods. Experimental results on image classification demonstrate that our MCL-OKD outperforms other state-of-the-art OKD methods by large margins without sacrificing additional inference cost. Codes are available at https://github.com/winycg/MCL-OKD.
102 - Yuchen Liu , Zhixin Shu , Yijun Li 2021
Generative adversarial networks (GANs), e.g., StyleGAN2, play a vital role in various image generation and synthesis tasks, yet their notoriously high computational cost hinders their efficient deployment on edge devices. Directly applying generic compression approaches yields poor results on GANs, which motivates a number of recent GAN compression works. While prior works mainly accelerate conditional GANs, e.g., pix2pix and CycleGAN, compressing state-of-the-art unconditional GANs has rarely been explored and is more challenging. In this paper, we propose novel approaches for unconditional GAN compression. We first introduce effective channel pruning and knowledge distillation schemes specialized for unconditional GANs. We then propose a novel content-aware method to guide the processes of both pruning and distillation. With content-awareness, we can effectively prune channels that are unimportant to the contents of interest, e.g., human faces, and focus our distillation on these regions, which significantly enhances the distillation quality. On StyleGAN2 and SN-GAN, we achieve a substantial improvement over the state-of-the-art compression method. Notably, we reduce the FLOPs of StyleGAN2 by 11x with visually negligible image quality loss compared to the full-size model. More interestingly, when applied to various image manipulation tasks, our compressed model forms a smoother and better disentangled latent manifold, making it more effective for image editing.
Recent applications pose requirements of both cross-domain knowledge transfer and model compression to machine learning models due to insufficient training data and limited computational resources. In this paper, we propose a new knowledge distillation model, named Spirit Distillation (SD), which is a model compression method with multi-domain knowledge transfer. The compact student network mimics out a representation equivalent to the front part of the teacher network, through which the general knowledge can be transferred from the source domain (teacher) to the target domain (student). To further improve the robustness of the student, we extend SD to Enhanced Spirit Distillation (ESD) in exploiting a more comprehensive knowledge by introducing the proximity domain which is similar to the target domain for feature extraction. Results demonstrate that our method can boost mIOU and high-precision accuracy by 1.4% and 8.2% respectively with 78.2% segmentation variance, and can gain a precise compact network with only 41.8% FLOPs.
We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of parallel neural networks as sub-networks, then we combine the feature maps from each sub-network using a fusion module to create a more meaningful feature map. The fused feature map is passed into the fused classifier for overall classification. Unlike existing feature fusion methods, in our framework, an ensemble of sub-network classifiers transfers its knowledge to the fused classifier and then the fused classifier delivers its knowledge back to each sub-network, mutually teaching one another in an online-knowledge distillation manner. This mutually teaching system not only improves the performance of the fused classifier but also obtains performance gain in each sub-network. Moreover, our model is more beneficial because different types of network can be used for each sub-network. We have performed a variety of experiments on multiple datasets such as CIFAR-10, CIFAR-100 and ImageNet and proved that our method is more effective than other alternative methods in terms of performance of both sub-networks and the fused classifier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا