Do you want to publish a course? Click here

Multi-view Contrastive Learning for Online Knowledge Distillation

169   0   0.0 ( 0 )
 Added by Chuanguang Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Previous Online Knowledge Distillation (OKD) often carries out mutually exchanging probability distributions, but neglects the useful representational knowledge. We therefore propose Multi-view Contrastive Learning (MCL) for OKD to implicitly capture correlations of feature embeddings encoded by multiple peer networks, which provide various views for understanding the input data instances. Benefiting from MCL, we can learn a more discriminative representation space for classification than previous OKD methods. Experimental results on image classification demonstrate that our MCL-OKD outperforms other state-of-the-art OKD methods by large margins without sacrificing additional inference cost. Codes are available at https://github.com/winycg/MCL-OKD.

rate research

Read More

176 - Guile Wu , Shaogang Gong 2020
Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviates this limitation by collaborative learning, mutual learning and online ensembling, following a one-stage end-to-end training fashion. However, collaborative learning and mutual learning fail to construct an online high-capacity teacher, whilst online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. In this work, we propose a novel Peer Collaborative Learning method for online knowledge distillation, which integrates online ensembling and network collaboration into a unified framework. Specifically, given a target network, we construct a multi-branch network for training, in which each branch is called a peer. We perform random augmentation multiple times on the inputs to peers and assemble feature representations outputted from peers with an additional classifier as the peer ensemble teacher. This helps to transfer knowledge from a high-capacity teacher to peers, and in turn further optimises the ensemble teacher. Meanwhile, we employ the temporal mean model of each peer as the peer mean teacher to collaboratively transfer knowledge among peers, which helps each peer to learn richer knowledge and facilitates to optimise a more stable model with better generalisation. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet show that the proposed method significantly improves the generalisation of various backbone networks and outperforms the state-of-the-art methods.
We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of parallel neural networks as sub-networks, then we combine the feature maps from each sub-network using a fusion module to create a more meaningful feature map. The fused feature map is passed into the fused classifier for overall classification. Unlike existing feature fusion methods, in our framework, an ensemble of sub-network classifiers transfers its knowledge to the fused classifier and then the fused classifier delivers its knowledge back to each sub-network, mutually teaching one another in an online-knowledge distillation manner. This mutually teaching system not only improves the performance of the fused classifier but also obtains performance gain in each sub-network. Moreover, our model is more beneficial because different types of network can be used for each sub-network. We have performed a variety of experiments on multiple datasets such as CIFAR-10, CIFAR-100 and ImageNet and proved that our method is more effective than other alternative methods in terms of performance of both sub-networks and the fused classifier.
Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose knowledge from a powerful teacher model to a less-parameterized student model. However, existing pose distillation works rely on a heavy pre-trained estimator to perform knowledge transfer and require a complex two-stage learning procedure. In this work, we investigate a novel Online Knowledge Distillation framework by distilling Human Pose structure knowledge in a one-stage manner to guarantee the distillation efficiency, termed OKDHP. Specifically, OKDHP trains a single multi-branch network and acquires the predicted heatmaps from each, which are then assembled by a Feature Aggregation Unit (FAU) as the target heatmaps to teach each branch in reverse. Instead of simply averaging the heatmaps, FAU which consists of multiple parallel transformations with different receptive fields, leverages the multi-scale information, thus obtains target heatmaps with higher-quality. Specifically, the pixel-wise Kullback-Leibler (KL) divergence is utilized to minimize the discrepancy between the target heatmaps and the predicted ones, which enables the student network to learn the implicit keypoint relationship. Besides, an unbalanced OKDHP scheme is introduced to customize the student networks with different compression rates. The effectiveness of our approach is demonstrated by extensive experiments on two common benchmark datasets, MPII and COCO.
We propose a self-supervised approach for learning representations of objects from monocular videos and demonstrate it is particularly useful in situated settings such as robotics. The main contributions of this paper are: 1) a self-supervising objective trained with contrastive learning that can discover and disentangle object attributes from video without using any labels; 2) we leverage object self-supervision for online adaptation: the longer our online model looks at objects in a video, the lower the object identification error, while the offline baseline remains with a large fixed error; 3) to explore the possibilities of a system entirely free of human supervision, we let a robot collect its own data, train on this data with our self-supervise scheme, and then show the robot can point to objects similar to the one presented in front of it, demonstrating generalization of object attributes. An interesting and perhaps surprising finding of this approach is that given a limited set of objects, object correspondences will naturally emerge when using contrastive learning without requiring explicit positive pairs. Videos illustrating online object adaptation and robotic pointing are available at: https://online-objects.github.io/.
138 - Yuang Liu , Wei Zhang , Jun Wang 2020
Knowledge Distillation (KD) is an effective framework for compressing deep learning models, realized by a student-teacher paradigm requiring small student networks to mimic the soft target generated by well-trained teachers. However, the teachers are commonly assumed to be complex and need to be trained on the same datasets as students. This leads to a time-consuming training process. The recent study shows vanilla KD plays a similar role as label smoothing and develops teacher-free KD, being efficient and mitigating the issue of learning from heavy teachers. But because teacher-free KD relies on manually-crafted output distributions kept the same for all data instances belonging to the same class, its flexibility and performance are relatively limited. To address the above issues, this paper proposes en efficient knowledge distillation learning framework LW-KD, short for lightweight knowledge distillation. It firstly trains a lightweight teacher network on a synthesized simple dataset, with an adjustable class number equal to that of a target dataset. The teacher then generates soft target whereby an enhanced KD loss could guide student learning, which is a combination of KD loss and adversarial loss for making student output indistinguishable from the output of the teacher. Experiments on several public datasets with different modalities demonstrate LWKD is effective and efficient, showing the rationality of its main design principles.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا