Do you want to publish a course? Click here

Optical phased array neural probes for beam-steering in brain tissue

145   0   0.0 ( 0 )
 Added by Fu Der Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Implantable silicon neural probes with integrated nanophotonic waveguides can deliver patterned dynamic illumination into brain tissue at depth. Here, we introduce neural probes with integrated optical phased arrays and demonstrate optical beam steering in vitro. Beam formation in brain tissue was simulated and characterized. The probes were used for optogenetic stimulation and calcium imaging.



rate research

Read More

91 - Nathan Dostart 2020
Optical phased arrays (OPAs) implemented in integrated photonic circuits could enable a variety of 3D sensing, imaging, illumination, and ranging applications, and their convergence in new LIDAR technology. However, current integrated OPA approaches do not scale - in control complexity, power consumption, and optical efficiency - to the large aperture sizes needed to support medium to long range LIDAR. We present the serpentine optical phased array (SOPA), a new OPA concept that addresses these fundamental challenges and enables architectures that scale up to large apertures. The SOPA is based on a serially interconnected array of low-loss grating waveguides and supports fully passive, two-dimensional (2D) wavelength-controlled beam steering. A fundamentally space-efficient design that folds the feed network into the aperture also enables scalable tiling of SOPAs into large apertures with a high fill-factor. We experimentally demonstrate the first SOPA, using a 1450 - 1650 nm wavelength sweep to produce 16,500 addressable spots in a 27x610 array. We also demonstrate, for the first time, far-field interference of beams from two separate OPAs on a single silicon photonic chip, as an initial step towards long-range computational imaging LIDAR based on novel active aperture synthesis schemes.
The ability of photonic crystal waveguides (PCWs) to confine and slow down light makes them an ideal component to enhance the performance of various photonic devices, such as optical modulators or sensors. However, the integration of PCWs in photonic applications poses design challenges, most notably, engineering the PCW mode dispersion and creating efficient coupling devices. Here, we solve these challenges with photonic inverse design, and experimentally demonstrate a slow-light PCW optical phased array (OPA) with a wide steering range. Even and odd mode PCWs are engineered for a group index of 25, over a bandwidth of 20nm and 12nm, respectively. Additionally, for both PCW designs, we create strip waveguide couplers and free-space vertical couplers. Finally, also relying on inverse design, the radiative losses of the PCW are engineered, allowing us to construct OPAs with a 20{deg} steering range in a 20nm bandwidth.
Switchable and active metasurfaces allow for the realization of beam steering, zoomable metalenses, or dynamic holography. To achieve this goal, one has to combine high-performance metasurfaces with switchable materials that exhibit high refractive index contrast and high switching speeds. In this work, we present an electrochemically switchable metasurface for beam steering where we use the conducting polymer poly(3,4-ethylene-dioxythiophene) (PEDOT) as an active material. We show beam diffraction with angles up to 10{deg} and change of the intensities of the diffracted and primary beams employing an externally applied cyclic voltage between -1 V and +0.5 V. With this unique combination, we realize switching speeds in the range of 1 Hz while the extension to typical display frequencies in the tens of Hz region is possible. Our findings have immediate implications on the design and fabrication of future electronically switchable and display nanotechnologies, such as dynamic holograms.
The design of a conical phased array antenna for air traffic control (ATC) radar systems is addressed in this work. The array, characterized by a fully digital beam-forming (DBF) architecture, is composed of equal vertical modules consisting of linear sparse arrays able to generate on receive multiple instantaneous beams pointing along different elevation directions. The synthesis problem is cast in the Compressive Sensing (CS) framework to achieve the best trade-off between the antenna complexity (i.e., minimum number of array elements and/or radio frequency components) and radiation performance (i.e., matching of a set of reference patterns). Towards this aim, the positions of the array elements and the set of complex element excitations of each beam are jointly defined through a customized CS-based optimization tool. Representative numerical results, concerned with ideal as well as real antenna models, are reported and discussed to validate the proposed design strategy and point out the features of the deigned modular sparse arrays also in comparison with those obtained from conventional arrays with uniformly spaced elements.
Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $sim 20$ ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا