Do you want to publish a course? Click here

Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

104   0   0.0 ( 0 )
 Added by Marc Jofre
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $sim 20$ ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust.



rate research

Read More

We study the optical properties of a two-axis galvanometric optical scanner constituted by a pair of rotating planar mirrors, focusing our attention on the transformation induced on the polarization state of the input beam. We obtain the matrix that defines the transformation of the propagation direction of the beam and the Jones matrix that defines the transformation of the polarization state. Both matrices are expressed in terms of the rotation angles of two mirrors. Finally, we calculate the parameters of the general rotation in the Poincare sphere that describes the change of polarization state for each mutual orientation of the mirrors.
66 - Y. Zhang , L. Yan , X. F. Zhang 2016
Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.
369 - B. S. Tan , P. B. Phua , 2 2007
We propose a robust spectral beam combining scheme using wavelength dependent polarisation rotators and polarization beam combiners. We successfully demonstrated the concept for two Yb-doped fiber lasers at 1064nm and 1092nm up to a total input power of 90W. The results reveal a very good combining efficiency and the potential for scaling to high power operations in this method of beam combining.
Multimode optical fibers have seen increasing applications in communication, imaging, high-power lasers and amplifiers. However, inherent imperfections and environmental perturbations cause random polarization and mode mixing, making the output polarization states very different from the input one. This poses a serious issue for employing polarization sensitive techniques to control light-matter interactions or nonlinear optical processes at the distal end of a fiber probe. Here we demonstrate a complete control of polarization states for all output channels by only manipulating the spatial wavefront of a laser beam into the fiber. Arbitrary polarization states for individual output channels are generated by wavefront shaping without constraint on input polarizations. The strong coupling between spatial and polarization degrees of freedom in a multimode fiber enables full polarization control with spatial degrees of freedom alone, transforming a multimode fiber to a highly-efficient reconfigurable matrix of waveplates.
130 - Yuqian Ye , Sailing He 2010
A bilayered chiral metamaterial (CMM) is proposed to realize a 90 degree polarization rotator, whose giant optical activity is due to the transverse magnetic dipole coupling among the metallic wire pairs of enantiomeric patterns. By transmission through this thin bilayered structure of less than lambda/30 thick, a linearly polarized wave is converted to its cross polarization with a resonant polarization conversion efficiency (PCE) of over 90%. Meanwhile, the axial ratio of the transmitted wave is better than 40 dB. It is demonstrated that the chirality in the propagation direction makes this efficient cross-polarization conversion possible. The transversely isotropic property of this polarization rotator is also experimentally verified. The optical activity of the present structure is about 2700 degree/lambda, which is the largest optical activity that can be found in literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا