Do you want to publish a course? Click here

Lie n-algebras and cohomologies of relative Rota-Baxter operators on n-Lie algebras

263   0   0.0 ( 0 )
 Added by Jiefeng Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-LieRep pairs. The notion of an n-pre-Lie algebra is introduced, which is the underlying algebraic structure of the relative Rota-Baxter operator. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extensions of order m deformations to order m+1 deformations of relative Rota-Baxter operators through the cohomology groups of relative Rota-Baxter operators. Moreover, we build the relation between the cohomology groups of relative Rota-Baxter operators on n-LieRep pairs and those on (n+1)-LieRep pairs by certain linear functions.

rate research

Read More

99 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
102 - Jun Jiang , Yunhe Sheng 2021
In this paper, first we give the notion of a representation of a relative Rota-Baxter Lie algebra and introduce the cohomologies of a relative Rota-Baxter Lie algebra with coefficients in a representation. Then we classify abelian extensions of relative Rota-Baxter Lie algebras using the second cohomology group, and classify skeletal relative Rota-Baxter Lie 2-algebras using the third cohomology group as applications. At last, using the established general framework of representations and cohomologies of relative Rota-Baxter Lie algebras, we give the notion of representations of Rota-Baxter Lie algebras, which is consistent with representations of Rota-Baxter associative algebras in the literature, and introduce the cohomologies of Rota-Baxter Lie algebras with coefficients in a representation. Applications are also given to classify abelian extensions of Rota-Baxter Lie algebras and skeletal Rota-Baxter Lie 2-algebras.
357 - Yunhe Sheng , Jia Zhao 2021
In this paper, first we introduce the notion of a quadratic Lie-Yamaguti algebra and show that the invariant bilinear form in a quadratic Lie-Yamaguti algebra induces an isomorphism between the adjoint representation and the coadjoint representation. Then we introduce the notions of relative Rota-Baxter operators on Lie-Yamaguti algebras and pre-Lie-Yamaguti algebras. We prove that a pre-Lie-Yamaguti algebra gives rise to a Lie-Yamaguti algebra naturally and a relative Rota-Baxter operator induces a pre-Lie-Yamaguti algebra. Finally we study symplectic structures on Lie-Yamaguti algebra, which give rise to relative Rota-Baxter operators as well as pre-Lie-Yamaguti algebras. As applications, we study phase spaces of Lie-Yamaguti algebras, and show that there is a one-to-one correspondence between phase spaces of Lie-Yamaguti algebras and Manin triples of pre-Lie-Yamaguti algebras.
Given a Lie algebroid with a representation, we construct a graded Lie algebra whose Maurer-Cartan elements characterize relative Rota-Baxter operators on Lie algebroids. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extendability of order $n$ deformations to order $n+1$ deformations of relative Rota-Baxter operators in terms of this cohomology theory. We also construct a graded Lie algebra on the space of multi-derivations of a vector bundle whose Maurer-Cartan elements characterize left-symmetric algebroids. We show that there is a homomorphism from the controlling graded Lie algebra of relative Rota-Baxter operators on Lie algebroids to the controlling graded Lie algebra of left-symmetric algebroids. Consequently, there is a natural homomorphism from the cohomology groups of a relative Rota-Baxter operator to the deformation cohomology groups of the associated left-symmetric algebroid. As applications, we give the controlling graded Lie algebra and the cohomology theory of Koszul-Vinberg structures on left-symmetric algebroids.
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the second cohomology group to study infinitesimal deformations of relative Rota-Baxter operators and modified $r$-matrices. Then we introduce a cohomology theory of relative Rota-Baxter operators on a Lie group. We construct the differentiation functor from the category of relative Rota-Baxter operators on Lie groups to that on Lie algebras, and extend it to the cohomology level by proving Van Est theorems between the two cohomology theories. Finally, we integrate a relative Rota-Baxter operator of weight 1 on a Lie algebra to a local relative Rota-Baxter operator on the corresponding Lie group, and show that the local integration and differentiation are adjoint to each other.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا