Do you want to publish a course? Click here

Semiparametric Latent Topic Modeling on Consumer-Generated Corpora

129   0   0.0 ( 0 )
 Added by Erniel Barrios
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Legacy procedures for topic modelling have generally suffered problems of overfitting and a weakness towards reconstructing sparse topic structures. With motivation from a consumer-generated corpora, this paper proposes semiparametric topic model, a two-step approach utilizing nonnegative matrix factorization and semiparametric regression in topic modeling. The model enables the reconstruction of sparse topic structures in the corpus and provides a generative model for predicting topics in new documents entering the corpus. Assuming the presence of auxiliary information related to the topics, this approach exhibits better performance in discovering underlying topic structures in cases where the corpora are small and limited in vocabulary. In an actual consumer feedback corpus, the model also demonstrably provides interpretable and useful topic definitions comparable with those produced by other methods.



rate research

Read More

Journalists obtain leads, or story ideas, by reading large corpora of government records: court cases, proposed bills, etc. However, only a small percentage of such records are interesting documents. We propose a model of newsworthiness aimed at surfacing interesting documents. We train models on automatically labeled corpora -- published newspaper articles -- to predict whether each article was a front-page article (i.e., textbf{newsworthy}) or not (i.e., textbf{less newsworthy}). We transfer these models to unlabeled corpora -- court cases, bills, city-council meeting minutes -- to rank documents in these corpora on newsworthiness. A fine-tuned RoBERTa model achieves .93 AUC performance on heldout labeled documents, and .88 AUC on expert-validated unlabeled corpora. We provide interpretation and visualization for our models.
This work focuses on combining nonparametric topic models with Auto-Encoding Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the topics are treated as trainable parameters and the document-specific topic proportions are obtained by a stick-breaking construction. The inference of iTM-VAE is modeled by neural networks such that it can be computed in a simple feed-forward manner. We also describe how to introduce a hyper-prior into iTM-VAE so as to model the uncertainty of the prior parameter. Actually, the hyper-prior technique is quite general and we show that it can be applied to other AEVB based models to alleviate the {it collapse-to-prior} problem elegantly. Moreover, we also propose HiTM-VAE, where the document-specific topic distributions are generated in a hierarchical manner. HiTM-VAE is even more flexible and can generate topic distributions with better variability. Experimental results on 20News and Reuters RCV1-V2 datasets show that the proposed models outperform the state-of-the-art baselines significantly. The advantages of the hyper-prior technique and the hierarchical model construction are also confirmed by experiments.
In a customer service system, dialogue summarization can boost service efficiency by automatically creating summaries for long spoken dialogues in which customers and agents try to address issues about specific topics. In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries that preserve the main ideas from dialogues. In spoken dialogues, abundant dialogue noise and common semantics could obscure the underlying informative content, making the general topic modeling approaches difficult to apply. In addition, for customer service, role-specific information matters and is an indispensable part of a summary. To effectively perform topic modeling on dialogues and capture multi-role information, in this work we propose a novel topic-augmented two-stage dialogue summarizer (TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues. Comprehensive studies on a real-world Chinese customer service dataset demonstrated the superiority of our method against several strong baselines.
Human conversations consist of reasonable and natural topic flows, which are observed as the shifts of the mentioned concepts across utterances. Previous chatbots that incorporate the external commonsense knowledge graph prove that modeling the concept shifts can effectively alleviate the dull and uninformative response dilemma. However, there still exists a gap between the concept relations in the natural conversation and those in the external commonsense knowledge graph, which is an issue to solve. Specifically, the concept relations in the external commonsense knowledge graph are not intuitively built from the conversational scenario but the world knowledge, which makes them insufficient for the chatbot construction. To bridge the above gap, we propose the method to supply more concept relations extracted from the conversational corpora and reconstruct an enhanced concept graph for the chatbot construction. In addition, we present a novel, powerful, and fast graph encoding architecture named the Edge-Transformer to replace the traditional GNN architecture. Experimental results on the Reddit conversation dataset indicate our proposed method significantly outperforms strong baseline systems and achieves new SOTA results. Further analysis individually proves the effectiveness of the enhanced concept graph and the Edge-Transformer architecture.
Large web-crawled corpora represent an excellent resource for improving the performance of Neural Machine Translation (NMT) systems across several language pairs. However, since these corpora are typically extremely noisy, their use is fairly limited. Current approaches to dealing with this problem mainly focus on filtering using heuristics or single features such as language model scores or bi-lingual similarity. This work presents an alternative approach which learns weights for multiple sentence-level features. These feature weights which are optimized directly for the task of improving translation performance, are used to score and filter sentences in the noisy corpora more effectively. We provide results of applying this technique to building NMT systems using the Paracrawl corpus for Estonian-English and show that it beats strong single feature baselines and hand designed combinations. Additionally, we analyze the sensitivity of this method to different types of noise and explore if the learned weights generalize to other language pairs using the Maltese-English Paracrawl corpus.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا