No Arabic abstract
In a customer service system, dialogue summarization can boost service efficiency by automatically creating summaries for long spoken dialogues in which customers and agents try to address issues about specific topics. In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries that preserve the main ideas from dialogues. In spoken dialogues, abundant dialogue noise and common semantics could obscure the underlying informative content, making the general topic modeling approaches difficult to apply. In addition, for customer service, role-specific information matters and is an indispensable part of a summary. To effectively perform topic modeling on dialogues and capture multi-role information, in this work we propose a novel topic-augmented two-stage dialogue summarizer (TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues. Comprehensive studies on a real-world Chinese customer service dataset demonstrated the superiority of our method against several strong baselines.
Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progression and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.
Automatic chat summarization can help people quickly grasp important information from numerous chat messages. Unlike conventional documents, chat logs usually have fragmented and evolving topics. In addition, these logs contain a quantity of elliptical and interrogative sentences, which make the chat summarization highly context dependent. In this work, we propose a novel unsupervised framework called RankAE to perform chat summarization without employing manually labeled data. RankAE consists of a topic-oriented ranking strategy that selects topic utterances according to centrality and diversity simultaneously, as well as a denoising auto-encoder that is carefully designed to generate succinct but context-informative summaries based on the selected utterances. To evaluate the proposed method, we collect a large-scale dataset of chat logs from a customer service environment and build an annotated set only for model evaluation. Experimental results show that RankAE significantly outperforms other unsupervised methods and is able to generate high-quality summaries in terms of relevance and topic coverage.
Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customers issues and service progress. These applications require summaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.
Emotion detection in dialogues is challenging as it often requires the identification of thematic topics underlying a conversation, the relevant commonsense knowledge, and the intricate transition patterns between the affective states. In this paper, we propose a Topic-Driven Knowledge-Aware Transformer to handle the challenges above. We firstly design a topic-augmented language model (LM) with an additional layer specialized for topic detection. The topic-augmented LM is then combined with commonsense statements derived from a knowledge base based on the dialogue contextual information. Finally, a transformer-based encoder-decoder architecture fuses the topical and commonsense information, and performs the emotion label sequence prediction. The model has been experimented on four datasets in dialogue emotion detection, demonstrating its superiority empirically over the existing state-of-the-art approaches. Quantitative and qualitative results show that the model can discover topics which help in distinguishing emotion categories.
Human conversations naturally evolve around different topics and fluently move between them. In research on dialog systems, the ability to actively and smoothly transition to new topics is often ignored. In this paper we introduce TIAGE, a new topic-shift aware dialog benchmark constructed utilizing human annotations on topic shifts. Based on TIAGE, we introduce three tasks to investigate different scenarios of topic-shift modeling in dialog settings: topic-shift detection, topic-shift triggered response generation and topic-aware dialog generation. Experiments on these tasks show that the topic-shift signals in TIAGE are useful for topic-shift response generation. On the other hand, dialog systems still struggle to decide when to change topic. This indicates further research is needed in topic-shift aware dialog modeling.