No Arabic abstract
Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory of perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in the unbroken phase due to non-vanishing anomalous Greens functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at non-zero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. We argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow, subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state, a spin-excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up-to times which grow with the electric field strength.
The Hohenberg-Kohn theorem and the Kohn-Sham equations, which are at the basis of the Density Functional Theory, are reformulated in terms of a particular many-body density, which is translational invariant and therefore is relevant for self-bound systems. In a similar way that there is a unique relation between the one-body density and the external potential that gives rise to it, we demonstrate that there is a unique relation between that particular many-body density and a definite many-body potential. The energy is then a functional of this density and its minimization leads to the ground-state energy of the system. As a proof of principle, the analogous of the Kohn-Sham equation is solved in the specific case of $^4$He atomic clusters, to put in evidence the advantages of this new formulation in terms of physical insights.
A visualization scheme for quantum many-body wavefunctions is described, which we have termed qubism. Its main property is its recursivity: increasing the number of qubits reflects in an increase in the image resolution. Thus, the plots are typically fractal. As examples, we provide images for the ground states of commonly used Hamiltonians in condensed matter and cold atom physics, such as Heisenberg or ITF. Many features of the wavefunction, such as magnetization, correlations and criticality, can be visualized as properties of the images. In particular, factorizability can be easily spotted, and a way to estimate the entanglement entropy from the image is provided.
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics. In this work, we analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator. We measure the temporal fluctuations in the average magnetization of a finite-size system of spin-$1/2$ particles. We experiment in a regime where the properties of the system are closely related to the integrable Hamiltonian with global spin-spin coupling, which enables analytical predictions even for the long-time non-integrable dynamics. The analytical expression for the temporal fluctuations predicts the exponential suppression of temporal fluctuations with increasing system size. Our measurement data is consistent with our theory predicting the regime of many-body dephasing.