Do you want to publish a course? Click here

A Bayesian Compressive Sensing Approach to Robust Near-Field Antenna Characterization

60   0   0.0 ( 0 )
 Added by Nicola Anselmi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm and it exploits some a-priori information on the antenna under test (AUT) to generate an over-complete representation basis. Accordingly, the problem at hand is reformulated in a compressive sensing (CS) framework as the retrieval of a maximally-sparse distribution (with respect to the overcomplete basis) from a reduced set of measured data and then it is solved by means of a Bayesian strategy. Representative numerical results are presented to, also comparatively, assess the effectiveness of the proposed approach in reducing the burden/cost of the acquisition process as well as to mitigate (possible) truncation errors when dealing with space-constrained probing systems.



rate research

Read More

This paper investigates the problem of joint massive devices separation and channel estimation for a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme in the sixth-generation (6G) wireless networks. In particular, by associating the data sequences to a rank-one tensor and exploiting the angular sparsity of the channel, the detection problem is cast as a high-order coupled tensor decomposition problem. However, the coupling among multiple devices to RIS (device-RIS) channels together with their sparse structure make the problem intractable. By devising novel priors to incorporate problem structures, we design a novel probabilistic model to capture both the element-wise sparsity from the angular channel model and the low rank property due to the sporadic nature of URA. Based on the this probabilistic model, we develop a coupled tensor-based automatic detection (CTAD) algorithm under the framework of variational inference with fast convergence and low computational complexity. Moreover, the proposed algorithm can automatically learn the number of active devices and thus effectively avoid noise overfitting. Extensive simulation results confirm the effectiveness and improvements of the proposed URA algorithm in large-scale RIS regime.
433 - Xu Shi , Jintao Wang , Guozhi Chen 2021
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amount of parameters in cascaded channel. The existing compressive sensing (CS)-based RIS estimation schemes only adopt incomplete sparsity, which induces redundant pilot consumption. In this paper, we exploit the specific triple-structured sparsity of the cascaded channel, i.e., the common column sparsity, structured row sparsity after offset compensation and the common offsets among all users. Then a novel multi-user joint estimation algorithm is proposed. Simulation results show that our approach can significantly reduce pilot overhead in both ULA and UPA scenarios.
207 - Shuai Huang , Trac D. Tran 2020
1-bit compressive sensing aims to recover sparse signals from quantized 1-bit measurements. Designing efficient approaches that could handle noisy 1-bit measurements is important in a variety of applications. In this paper we use the approximate message passing (AMP) to achieve this goal due to its high computational efficiency and state-of-the-art performance. In AMP the signal of interest is assumed to follow some prior distribution, and its posterior distribution can be computed and used to recover the signal. In practice, the parameters of the prior distributions are often unknown and need to be estimated. Previous works tried to find the parameters that maximize either the measurement likelihood or the Bethe free entropy, which becomes increasingly difficult to solve in the case of complicated probability models. Here we propose to treat the parameters as unknown variables and compute their posteriors via AMP as well, so that the parameters and the signal can be recovered jointly. This leads to a much simpler way to perform parameter estimation compared to previous methods and enables us to work with noisy 1-bit measurements. We further extend the proposed approach to the general quantization noise model that outputs multi-bit measurements. Experimental results show that the proposed approach generally perform much better than the other state-of-the-art methods in the zero-noise and moderate-noise regimes, and outperforms them in most of the cases in the high-noise regime.
In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoding with imperfect channel state information (CSI). By exploiting both instantaneous and statistical CSI, we aim to design precoding vectors to maximize the ergodic rate (e.g., sum rate, minimum rate and etc.) subject to a total transmit power constraint. To maximize an upper bound of the ergodic rate, we leverage the corresponding Lagrangian formulation and identify the structural characteristics of the optimal precoder as the solution to a generalized eigenvalue problem. As such, the high-dimensional precoder design problem turns into a low-dimensional power control problem. The Lagrange multipliers play a crucial role in determining both precoder directions and power parameters, yet are challenging to be solved directly. To figure out the Lagrange multipliers, we develop a general framework underpinned by a properly designed neural network that learns directly from CSI. To further relieve the computational burden, we obtain a low-complexity framework by decomposing the original problem into computationally efficient subproblems with instantaneous and statistical CSI handled separately. With the off-line pretrained neural network, the online computational complexity of precoding is substantially reduced compared with the existing iterative algorithm while maintaining nearly the same performance.
Greedy algorithms are popular in compressive sensing for their high computational efficiency. But the performance of current greedy algorithms can be degenerated seriously by noise (both multiplicative noise and additive noise). A robust version of greedy cosparse greedy algorithm (greedy analysis pursuit) is presented in this paper. Comparing with previous methods, The proposed robust greedy analysis pursuit algorithm is based on an optimization model which allows both multiplicative noise and additive noise in the data fitting constraint. Besides, a new stopping criterion that is derived. The new algorithm is applied to compressive sensing of ECG signals. Numerical experiments based on real-life ECG signals demonstrate the performance improvement of the proposed greedy algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا