No Arabic abstract
1-bit compressive sensing aims to recover sparse signals from quantized 1-bit measurements. Designing efficient approaches that could handle noisy 1-bit measurements is important in a variety of applications. In this paper we use the approximate message passing (AMP) to achieve this goal due to its high computational efficiency and state-of-the-art performance. In AMP the signal of interest is assumed to follow some prior distribution, and its posterior distribution can be computed and used to recover the signal. In practice, the parameters of the prior distributions are often unknown and need to be estimated. Previous works tried to find the parameters that maximize either the measurement likelihood or the Bethe free entropy, which becomes increasingly difficult to solve in the case of complicated probability models. Here we propose to treat the parameters as unknown variables and compute their posteriors via AMP as well, so that the parameters and the signal can be recovered jointly. This leads to a much simpler way to perform parameter estimation compared to previous methods and enables us to work with noisy 1-bit measurements. We further extend the proposed approach to the general quantization noise model that outputs multi-bit measurements. Experimental results show that the proposed approach generally perform much better than the other state-of-the-art methods in the zero-noise and moderate-noise regimes, and outperforms them in most of the cases in the high-noise regime.
The generalized approximate message passing (GAMP) algorithm under the Bayesian setting shows advantage in recovering under-sampled sparse signals from corrupted observations. Compared to conventional convex optimization methods, it has a much lower complexity and is computationally tractable. In the GAMP framework, the sparse signal and the observation are viewed to be generated according to some pre-specified probability distributions in the input and output channels. However, the parameters of the distributions are usually unknown in practice. In this paper, we propose an extended GAMP algorithm with built-in parameter estimation (PE-GAMP) and present its empirical convergence analysis. PE-GAMP treats the parameters as unknown random variables with simple priors and jointly estimates them with the sparse signals. Compared with Expectation Maximization (EM) based parameter estimation methods, the proposed PE-GAMP could draw information from the prior distributions of the parameters to perform parameter estimation. It is also more robust and much simpler, which enables us to consider more complex signal distributions apart from the usual Bernoulli-Gaussian (BGm) mixture distribution. Specifically, the formulations of Bernoulli-Exponential mixture (BEm) distribution and Laplace distribution are given in this paper. Simulated noiseless sparse signal recovery experiments demonstrate that the performance of the proposed PE-GAMP matches the oracle GAMP algorithm. When noise is present, both the simulated experiments and the real image recovery experiments show that PE-GAMP is still able to maintain its robustness and outperform EM based parameter estimation method when the sampling ratio is small. Additionally, using the BEm formulation of the PE-GAMP, we can successfully perform non-negative sparse coding of local image patches and provide useful features for the image classification task.
The orthogonal-time-frequency-space (OTFS) modulation has emerged as a promising modulation scheme for high mobility wireless communications. To harvest the time and frequency diversity promised by OTFS, some promising detectors, especially message passing based ones, have been developed by taking advantage of the sparsity of the channel in the delay-Doppler domain. However, when the number of channel paths is relatively large or fractional Doppler {shifts have} to be considered, the complexity of existing detectors is a concern, and the message passing based detectors may suffer from performance loss due to the short loops involved in message passing. In this work, we investigate the design of OTFS detectors based on the approximate message passing (AMP). In particular, {leveraging the unitary AMP (UAMP), we design new detectors that enjoy} the structure of the channel matrix and allow efficient implementation. In addition, the estimation of noise variance is incorporated into the UAMP-based detectors. Thanks to the robustness of UAMP relative to AMP, the UAMP-based detectors deliver superior performance, and outperform state-of-the-art detectors significantly. We also investigate iterative joint detection and decoding in a coded OTFS system, where the OTFS detectors are integrated into a powerful turbo receiver, leading to considerable performance gains.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and lowpower configuration enables coverage extension, massive connectivity, and low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted multi-user wireless communication system and present a joint channel estimation and signal recovery algorithm in this paper. Specifically, we propose a bidirectional approximate message passing algorithm that applies the Taylor series expansion and Gaussian approximation to simplify the sum-product algorithm in the formulated problem. Our simulation results show that the proposed algorithm shows the superiority over a state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed algorithms.
Approximate Message Passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problem. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of the Gauss-Bernouilli prior which utilizes a Restricted Boltzmann Machine (RBM) trained on the signal support to push reconstruction performance beyond that of simple iid priors for signals whose support can be well represented by a trained binary RBM. We present and analyze two methods of RBM factorization and demonstrate how these affect signal reconstruction performance within our proposed algorithm. Finally, using the MNIST handwritten digit dataset, we show experimentally that using an RBM allows AMP to approach oracle-support performance.
Reconstruction of images from noisy linear measurements is a core problem in image processing, for which convex optimization methods based on total variation (TV) minimization have been the long-standing state-of-the-art. We present an alternative probabilistic reconstruction procedure based on approximate message-passing, Scampi, which operates in the compressive regime, where the inverse imaging problem is underdetermined. While the proposed method is related to the recently proposed GrAMPA algorithm of Borgerding, Schniter, and Rangan, we further develop the probabilistic approach to compressive imaging by introducing an expectation-maximizaiton learning of model parameters, making the Scampi robust to model uncertainties. Additionally, our numerical experiments indicate that Scampi can provide reconstruction performance superior to both GrAMPA as well as convex approaches to TV reconstruction. Finally, through exhaustive best-case experiments, we show that in many cases the maximal performance of both Scampi and convex TV can be quite close, even though the approaches are a prori distinct. The theoretical reasons for this correspondence remain an open question. Nevertheless, the proposed algorithm remains more practical, as it requires far less parameter tuning to perform optimally.