Do you want to publish a course? Click here

Spin-current induced mechanical torque in a chiral molecular junction

77   0   0.0 ( 0 )
 Added by Yasuhiro Utsumi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the appearance of a mechanical torque that acts on a chiral molecule: a single-stranded DNA, in which the spin-orbit interaction is expected to induce a spin-selectivity effect. The mechanical torque is shown to appear as a result of the non-conservation of the spin current in the presence of the spin-orbit interaction. Adopting a simple microscopic model Hamiltonian for a chiral molecule connected to source and drain leads, and accounting for the mechanical torque acting on the chiral molecule as the back action on the electrons traversing the molecule, we derive the spin continuity-equation. It connects the spin current expressed by a Landauer-type formula and the mechanical torque. Thus, by injecting a spin-polarized current from the source electrode, it is possible to generate a torque, which will rotate the DNA molecule.



rate research

Read More

We investigate an interfacial spin-transfer torque and $beta$-term torque with alternating current (AC) parallel to a magnetic interface. We find that both torques are resonantly enhanced as the AC frequency approaches to the exchange splitting energy. We show that this resonance allows us to estimate directly the interfacial exchange interaction strength from the domain wall motion. We also find that the $beta$-term includes an unconventional contribution which is proportional to the time derivative of the current and exists even in absence of any spin relaxation processes.
We investigate the dynamics of a magnetic vortex driven by spin-transfer torque due to spin current in the adiabatic case. The vortex core represented by collective coordinate experiences a transverse force proportional to the product of spin current and gyrovector, which can be interpreted as the geometric force determined by topological charges. We show that this force is just a reaction force of Lorentz-type force from the spin current of conduction electrons. Based on our analyses, we propose analytically and numerically a possible experiment to check the vortex displacement by spin current in the case of single magnetic nanodot.
Understanding and controlling heat transport in molecular junctions would provide new routes to design nanoscale coupled electronic and phononic devices. Using first principles full quantum calculations, we tune thermal conductance of a molecular junction by mechanically compressing and extending a short alkane chain connected to graphene leads. We find that the thermal conductance of the compressed junction drops by half in comparison to the extended junction, making it possible to turn on and off the heat current. The low conductance of the off state does not vary by further approaching the leads and stems from the suppression of the transmission of the in--plane transverse and longitudinal channels. Furthermore, we show that misalignment of the leads does not reduce the conductance ratio. These results also contribute to the general understanding of thermal transport in molecular junctions.
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
We theoretically examine the spin-transfer torque in the presence of spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the basis of linear response theory. We obtained, in addition to the usual spin-transfer torque, a new contributioin $sim {bm j}_{rm SH}^{phantom{dagger}} cdot abla {bm n}$ in the first order in SOI, where ${bm j}_{rm SH}^{phantom{dagger}}$ is the spin Hall current driven by an external electric field. This is a reaction to inverse spin Hall effect driven by spin motive force in a ferromagnet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا