No Arabic abstract
In recent time, the optical-analogous skyrmions, topological quasiparticles with sophisticated vectorial structures, have received an increasing amount of interest. Here we propose theortically and experimentally a generalized family of these, the tunable optical skyrmion, unveiling a new mechanism to transform between various skyrmionic topologies, including Neel-, Bloch-, and antiskyrmion types, via simple parametric tuning. In addition, Poincare-like geometric representation is proposed to visualize the topological evolution of tunable skyrmions, which we termed Skyrme-Poincare sphere, akin to the spin-orbit representation of complex vector modes. To generate experimentally the tunable optical skyrmions we implemented a digital hologram system based on a spatial light modulator, showing great agreement with our theoretical prediction.
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincare sphere. Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the higher order Poincare sphere with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincare sphere.
The control of polarization, an essential property of light, is of wide scientific and technological interest. Polarizer is an indispensable optical element for direct polarization generations. Except common linear and circular polarizations, however, arbitrary polarization generation heavily resorts to bulky optical components by cascading linear polarizers and waveplates. Here, we present a general strategy for designing all-in-one full Poincare sphere polarizers based on perfect arbitrary polarization conversion dichroism, and realize it in a monolayer all-dielectric metasurface. It allows preferential transmission and conversion of one polarization state locating at an arbitrary position of the Poincare sphere to its handedness-flipped state, while completely blocking its orthogonal state. In contrast to previous work with limited flexibility to only linear or circular polarizations, our method manifests perfect dichroism close to 100% in theory and exceeding 90% in experiments for arbitrary polarization states. Leveraging this tantalizing dichroism, our demonstration of monolithic full Poincare sphere polarization generators directly from unpolarized light can enormously extend the scope of meta-optics and dramatically push the state-of-the-art nanophotonic devices.
We propose that the full Poincar{e} beam with any polarization geometries can be pictorially described by the hybrid-order Poincar{e} sphere whose eigenstates are defined as a fundamental-mode Gaussian beam and a Laguerre-Gauss beam. A robust and efficient Sagnac interferometer is established to generate any desired full Poincar{e} beam on the hybrid-order Poincar{e} sphere, via modulating the incident state of polarization. Our research may provide an alternative way for describing the full Poincar{e} beam and an effective method to manipulate the polarization of light.
Magnetic skyrmions are topological quasiparticles in magnetic field. Until recently, as one of their photonic counterparts, Neel-type photonic skyrmion is discovered in surface plasmon polaritons. The deep-subwavelength features of the photonic skyrmions suggest their potentials in quantum technologies and data storage. So far, the Bloch-type photonic skyrmion has yet to be demonstrated in this brand new research field. Here, by exploiting the quantum spin Hall effect of a plasmonic optical vortex in multilayered structure, we predict the existence of photonic twisted-Neel- and Bloch-type skyrmions in chiral materials. Their chirality-dependent features can be considered as additional degrees-of-freedom for future chiral sensing, information processing and storage technologies. In particular, our findings enlarge the family of photonic skyrmions and reveal a remarkable resemblance of the feature of chiral materials in two seemingly distant fields: photonic skyrmions and magnetic skyrmions.
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under off resonance femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.