No Arabic abstract
The control of polarization, an essential property of light, is of wide scientific and technological interest. Polarizer is an indispensable optical element for direct polarization generations. Except common linear and circular polarizations, however, arbitrary polarization generation heavily resorts to bulky optical components by cascading linear polarizers and waveplates. Here, we present a general strategy for designing all-in-one full Poincare sphere polarizers based on perfect arbitrary polarization conversion dichroism, and realize it in a monolayer all-dielectric metasurface. It allows preferential transmission and conversion of one polarization state locating at an arbitrary position of the Poincare sphere to its handedness-flipped state, while completely blocking its orthogonal state. In contrast to previous work with limited flexibility to only linear or circular polarizations, our method manifests perfect dichroism close to 100% in theory and exceeding 90% in experiments for arbitrary polarization states. Leveraging this tantalizing dichroism, our demonstration of monolithic full Poincare sphere polarization generators directly from unpolarized light can enormously extend the scope of meta-optics and dramatically push the state-of-the-art nanophotonic devices.
Birefringent materials or nanostructures that introduce phase differences between two linear polarizations underpin the operation of wave plates for polarization control of light. Here we develop metasurfaces realizing a distinct class of complex-birefringent wave plates, which combine polarization transformation with a judiciously tailored polarization-dependent phase retardance and amplitude filtering via diffraction. We prove that the presence of loss enables the mapping from any chosen generally non-orthogonal pair of polarizations to any other pair at the output. We establish an optimal theoretical design-framework based on pairwise nanoresonator structures and experimentally demonstrate unique properties of metasurfaces in the amplification of small polarization differences and polarization coupling with unconventional phase control. Furthermore, we reveal that these metasurfaces can perform arbitrary transformations of biphoton polarization-encoded quantum states, including the modification of the degree of entanglement. Thereby, such flat devices can facilitate novel types of multi-functional polarization optics for classical and quantum applications.
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincare sphere. Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the higher order Poincare sphere with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincare sphere.
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of OAM $ell$. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge $q$. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the OAM changes in value by $ell = pm2qhbar$ per photon. We experimentally demonstrate $ell$ values ranging from $pm 1$ to $pm 25$ with conversion efficiencies of $8.6pm0.4~%$. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations and nano-scale sensing.
While polarisation sensing is vital in many areas of research, with applications spanning from microscopy to aerospace, traditional approaches are limited by method-related error amplification or accumulation, placing fundamental limitations on precision and accuracy in single-shot polarimetry. Here, we put forward a new measurement paradigm to circumvent this, introducing the notion of a universal full Poincare generator to map all polarisation analyser states into a single vectorially structured light field, allowing all vector components to be analysed in a single-shot with theoretically user-defined precision. To demonstrate the advantage of our approach, we use a common GRIN optic as our mapping device and show mean errors of <1% for each vector component, enhancing the sensitivity by around three times, allowing us to sense weak polarisation aberrations not measurable by traditional single-shot techniques. Our work paves the way for next-generation polarimetry, impacting a wide variety of applications relying on weak vector measurement.
Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicles navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of materials like narrow-band gap semiconductors which are sensitive to thermal noise and often require cryogenic cooling. Here, we demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas, using a nonlinear wave-mixing process. We experimentally show the up-conversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation. In this process, an infrared image of a target is mixed inside the metasurface with a strong pump beam, translating the image from infrared to the visible in a nanoscale ultra-thin imaging device. Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.