Do you want to publish a course? Click here

MuVAM: A Multi-View Attention-based Model for Medical Visual Question Answering

255   0   0.0 ( 0 )
 Added by Shunning He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Medical Visual Question Answering (VQA) is a multi-modal challenging task widely considered by research communities of the computer vision and natural language processing. Since most current medical VQA models focus on visual content, ignoring the importance of text, this paper proposes a multi-view attention-based model(MuVAM) for medical visual question answering which integrates the high-level semantics of medical images on the basis of text description. Firstly, different methods are utilized to extract the features of the image and the question for the two modalities of vision and text. Secondly, this paper proposes a multi-view attention mechanism that include Image-to-Question (I2Q) attention and Word-to-Text (W2T) attention. Multi-view attention can correlate the question with image and word in order to better analyze the question and get an accurate answer. Thirdly, a composite loss is presented to predict the answer accurately after multi-modal feature fusion and improve the similarity between visual and textual cross-modal features. It consists of classification loss and image-question complementary (IQC) loss. Finally, for data errors and missing labels in the VQA-RAD dataset, we collaborate with medical experts to correct and complete this dataset and then construct an enhanced dataset, VQA-RADPh. The experiments on these two datasets show that the effectiveness of MuVAM surpasses the state-of-the-art method.



rate research

Read More

The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset.
Due to the severe lack of labeled data, existing methods of medical visual question answering usually rely on transfer learning to obtain effective image feature representation and use cross-modal fusion of visual and linguistic features to achieve question-related answer prediction. These two phases are performed independently and without considering the compatibility and applicability of the pre-trained features for cross-modal fusion. Thus, we reformulate image feature pre-training as a multi-task learning paradigm and witness its extraordinary superiority, forcing it to take into account the applicability of features for the specific image comprehension task. Furthermore, we introduce a cross-modal self-attention~(CMSA) module to selectively capture the long-range contextual relevance for more effective fusion of visual and linguistic features. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods. Our code and models are available at https://github.com/haifangong/CMSA-MTPT-4-MedicalVQA.
253 - Huijuan Xu , Kate Saenko 2015
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurrent networks to this problem, but have failed to model spatial inference. To remedy this, we propose a model we call the Spatial Memory Network and apply it to the VQA task. Memory networks are recurrent neural networks with an explicit attention mechanism that selects certain parts of the information stored in memory. Our Spatial Memory Network stores neuron activations from different spatial regions of the image in its memory, and uses the question to choose relevant regions for computing the answer, a process of which constitutes a single hop in the network. We propose a novel spatial attention architecture that aligns words with image patches in the first hop, and obtain improved results by adding a second attention hop which considers the whole question to choose visual evidence based on the results of the first hop. To better understand the inference process learned by the network, we design synthetic questions that specifically require spatial inference and visualize the attention weights. We evaluate our model on two published visual question answering datasets, DAQUAR [1] and VQA [2], and obtain improved results compared to a strong deep baseline model (iBOWIMG) which concatenates image and question features to predict the answer [3].
Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology? To achieve this goal, the first step is to create a visual question answering (VQA) dataset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Our work makes the first attempt to build such a dataset. Different from creating general-domain VQA datasets where the images are widely accessible and there are many crowdsourcing workers available and capable of generating question-answer pairs, developing a medical VQA dataset is much more challenging. First, due to privacy concerns, pathology images are usually not publicly available. Second, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. To address these challenges, we resort to pathology textbooks and online digital libraries. We develop a semi-automated pipeline to extract pathology images and captions from textbooks and generate question-answer pairs from captions using natural language processing. We collect 32,799 open-ended questions from 4,998 pathology images where each question is manually checked to ensure correctness. To our best knowledge, this is the first dataset for pathology VQA. Our dataset will be released publicly to promote research in medical VQA.
Exploiting relationships between visual regions and question words have achieved great success in learning multi-modality features for Visual Question Answering (VQA). However, we argue that existing methods mostly model relations between individual visual regions and words, which are not enough to correctly answer the question. From humans perspective, answering a visual question requires understanding the summarizations of visual and language information. In this paper, we proposed the Multi-modality Latent Interaction module (MLI) to tackle this problem. The proposed module learns the cross-modality relationships between latent visual and language summarizations, which summarize visual regions and question into a small number of latent representations to avoid modeling uninformative individual region-word relations. The cross-modality information between the latent summarizations are propagated to fuse valuable information from both modalities and are used to update the visual and word features. Such MLI modules can be stacked for several stages to model complex and latent relations between the two modalities and achieves highly competitive performance on public VQA benchmarks, VQA v2.0 and TDIUC . In addition, we show that the performance of our methods could be significantly improved by combining with pre-trained language model BERT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا