No Arabic abstract
We study the {em Budgeted Dominating Set} (BDS) problem on uncertain graphs, namely, graphs with a probability distribution $p$ associated with the edges, such that an edge $e$ exists in the graph with probability $p(e)$. The input to the problem consists of a vertex-weighted uncertain graph $G=(V, E, p, omega)$ and an integer {em budget} (or {em solution size}) $k$, and the objective is to compute a vertex set $S$ of size $k$ that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of $S$. We refer to the problem as the {em Probabilistic Budgeted Dominating Set}~(PBDS) problem and present the following results. begin{enumerate} dnsitem We show that the PBDS problem is NP-complete even when restricted to uncertain {em trees} of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is wone-hard for the budget parameter $k$, and under the {em Exponential time hypothesis} it cannot be solved in $n^{o(k)}$ time. item We show that if one is willing to settle for $(1-epsilon)$ approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. item We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is wone-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget $k$ and the treewidth. item Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. end{enumerate}
A unit disk graph is the intersection graph of n congruent disks in the plane. Dominating sets in unit disk graphs are widely studied due to their application in wireless ad-hoc networks. Because the minimum dominating set problem for unit disk graphs is NP-hard, numerous approximation algorithms have been proposed in the literature, including some PTAS. However, since the proposal of a linear-time 5-approximation algorithm in 1995, the lack of efficient algorithms attaining better approximation factors has aroused attention. We introduce a linear-time O(n+m) approximation algorithm that takes the usual adjacency representation of the graph as input and outputs a 44/9-approximation. This approximation factor is also attained by a second algorithm, which takes the geometric representation of the graph as input and runs in O(n log n) time regardless of the number of edges. Additionally, we propose a 43/9-approximation which can be obtained in O(n^2 m) time given only the graphs adjacency representation. It is noteworthy that the dominating sets obtained by our algorithms are also independent sets.
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear algebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
Network reliability is an important metric to evaluate the connectivity among given vertices in uncertain graphs. Since the network reliability problem is known as #P-complete, existing studies have used approximation techniques. In this paper, we propose a new sampling-based approach that efficiently and accurately approximates network reliability. Our approach improves efficiency by reducing the number of samples based on stratified sampling. We theoretically guarantee that our approach improves the accuracy of approximation by using lower and upper bounds of network reliability, even though it reduces the number of samples. To efficiently compute the bounds, we develop an extended BDD, called S2BDD. During constructing the S2BDD, our approach employs dynamic programming for efficiently sampling possible graphs. Our experiment with real datasets demonstrates that our approach is up to 51.2 times faster than the existing sampling-based approach with higher accuracy.
Retraction note: After posting the manuscript on arXiv, we were informed by Erik Jan van Leeuwen that both results were known and they appeared in his thesis[vL09]. A PTAS for MDS is at Theorem 6.3.21 on page 79 and A PTAS for MCDS is at Theorem 6.3.31 on page 82. The techniques used are very similar. He noted that the idea for dealing with the connected version using a constant number of extra layers in the shifting technique not only appeared Zhang et al.[ZGWD09] but also in his 2005 paper [vL05]. Finally, van Leeuwen also informed us that the open problem that we posted has been resolved by Marx~[Mar06, Mar07] who showed that an efficient PTAS for MDS does not exist [Mar06] and under ETH, the running time of $n^{O(1/epsilon)}$ is best possible [Mar07]. We thank Erik Jan van Leeuwen for the information and we regret that we made this mistake. Abstract before retraction: We present two (exponentially) faster PTASs for dominating set problems in unit disk graphs. Given a geometric representation of a unit disk graph, our PTASs that find $(1+epsilon)$-approximate solutions to the Minimum Dominating Set (MDS) and the Minimum Connected Dominating Set (MCDS) of the input graph run in time $n^{O(1/epsilon)}$. This can be compared to the best known $n^{O(1/epsilon log {1/epsilon})}$-time PTAS by Nieberg and Hurink~[WAOA05] for MDS that only uses graph structures and an $n^{O(1/epsilon^2)}$-time PTAS for MCDS by Zhang, Gao, Wu, and Du~[J Glob Optim09]. Our key ingredients are improved dynamic programming algorithms that depend exponentially on more essential 1-dimensional widths of the problems.