Do you want to publish a course? Click here

Efficient Network Reliability Computation in Uncertain Graphs

165   0   0.0 ( 0 )
 Added by Yuya Sasaki
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Network reliability is an important metric to evaluate the connectivity among given vertices in uncertain graphs. Since the network reliability problem is known as #P-complete, existing studies have used approximation techniques. In this paper, we propose a new sampling-based approach that efficiently and accurately approximates network reliability. Our approach improves efficiency by reducing the number of samples based on stratified sampling. We theoretically guarantee that our approach improves the accuracy of approximation by using lower and upper bounds of network reliability, even though it reduces the number of samples. To efficiently compute the bounds, we develop an extended BDD, called S2BDD. During constructing the S2BDD, our approach employs dynamic programming for efficiently sampling possible graphs. Our experiment with real datasets demonstrates that our approach is up to 51.2 times faster than the existing sampling-based approach with higher accuracy.



rate research

Read More

Like [1], we present an algorithm to compute the simulation of a query pattern in a graph of labeled nodes and unlabeled edges. However, our algorithm works on a compressed graph grammar, instead of on the original graph. The speed-up of our algorithm compared to the algorithm in [1] grows with the size of the graph and with the compression strength.
A visibility algorithm maps time series into complex networks following a simple criterion. The resulting visibility graph has recently proven to be a powerful tool for time series analysis. However its straightforward computation is time-consuming and rigid, motivating the development of more efficient algorithms. Here we present a highly efficient method to compute visibility graphs with the further benefit of flexibility: on-line computation. We propose an encoder/decoder approach, with an on-line adjustable binary search tree codec for time series as well as its corresponding decoder for visibility graphs. The empirical evidence suggests the proposed method for computation of visibility graphs offers an on-line computation solution at no additional computation time cost. The source code is available online.
We study the {em Budgeted Dominating Set} (BDS) problem on uncertain graphs, namely, graphs with a probability distribution $p$ associated with the edges, such that an edge $e$ exists in the graph with probability $p(e)$. The input to the problem consists of a vertex-weighted uncertain graph $G=(V, E, p, omega)$ and an integer {em budget} (or {em solution size}) $k$, and the objective is to compute a vertex set $S$ of size $k$ that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of $S$. We refer to the problem as the {em Probabilistic Budgeted Dominating Set}~(PBDS) problem and present the following results. begin{enumerate} dnsitem We show that the PBDS problem is NP-complete even when restricted to uncertain {em trees} of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is wone-hard for the budget parameter $k$, and under the {em Exponential time hypothesis} it cannot be solved in $n^{o(k)}$ time. item We show that if one is willing to settle for $(1-epsilon)$ approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. item We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is wone-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget $k$ and the treewidth. item Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. end{enumerate}
Uncertain graphs have been widely used to model complex linked data in many real-world applications, such as guaranteed-loan networks and power grids, where a node or edge may be associated with a probability. In these networks, a node usually has a certain chance of default or breakdown due to self-factors or the influence from upstream nodes. For regulatory authorities and companies, it is critical to efficiently identify the vulnerable nodes, i.e., nodes with high default risks, such that they could pay more attention to these nodes for the purpose of risk management. In this paper, we propose and investigate the problem of top-$k$ vulnerable nodes detection in uncertain graphs. We formally define the problem and prove its hardness. To identify the $k$ most vulnerable nodes, a sampling-based approach is proposed. Rigorous theoretical analysis is conducted to bound the quality of returned results. Novel optimization techniques and a bottom-$k$ sketch based approach are further developed in order to scale for large networks. In the experiments, we demonstrate the performance of proposed techniques on 3 real financial networks and 5 benchmark networks. The evaluation results show that the proposed methods can achieve up to 2 orders of magnitudes speedup compared with the baseline approach. Moreover, to further verify the advantages of our model in real-life scenarios, we integrate the proposed techniques with our current loan risk control system, which is deployed in the collaborated bank, for more evaluation. Particularly, we show that our proposed new model has superior performance on real-life guaranteed-loan network data, which can better predict the default risks of enterprises compared to the state-of-the-art techniques.
Recently, great efforts have been dedicated to researches on the management of large scale graph based data such as WWW, social networks, biological networks. In the study of graph based data management, node disjoint subgraph homeomorphism relation between graphs is more suitable than (sub)graph isomorphism in many cases, especially in those cases that node skipping and node mismatching are allowed. However, no efficient node disjoint subgraph homeomorphism determination (ndSHD) algorithms have been available. In this paper, we propose two computationally efficient ndSHD algorithms based on state spaces searching with backtracking, which employ many heuristics to prune the search spaces. Experimental results on synthetic data sets show that the proposed algorithms are efficient, require relative little time in most of the testing cases, can scale to large or dense graphs, and can accommodate to more complex fuzzy matching cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا