Do you want to publish a course? Click here

Retraction: Improved Approximation Schemes for Dominating Set Problems in Unit Disk Graphs

141   0   0.0 ( 0 )
 Added by Pattara Sukprasert
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Retraction note: After posting the manuscript on arXiv, we were informed by Erik Jan van Leeuwen that both results were known and they appeared in his thesis[vL09]. A PTAS for MDS is at Theorem 6.3.21 on page 79 and A PTAS for MCDS is at Theorem 6.3.31 on page 82. The techniques used are very similar. He noted that the idea for dealing with the connected version using a constant number of extra layers in the shifting technique not only appeared Zhang et al.[ZGWD09] but also in his 2005 paper [vL05]. Finally, van Leeuwen also informed us that the open problem that we posted has been resolved by Marx~[Mar06, Mar07] who showed that an efficient PTAS for MDS does not exist [Mar06] and under ETH, the running time of $n^{O(1/epsilon)}$ is best possible [Mar07]. We thank Erik Jan van Leeuwen for the information and we regret that we made this mistake. Abstract before retraction: We present two (exponentially) faster PTASs for dominating set problems in unit disk graphs. Given a geometric representation of a unit disk graph, our PTASs that find $(1+epsilon)$-approximate solutions to the Minimum Dominating Set (MDS) and the Minimum Connected Dominating Set (MCDS) of the input graph run in time $n^{O(1/epsilon)}$. This can be compared to the best known $n^{O(1/epsilon log {1/epsilon})}$-time PTAS by Nieberg and Hurink~[WAOA05] for MDS that only uses graph structures and an $n^{O(1/epsilon^2)}$-time PTAS for MCDS by Zhang, Gao, Wu, and Du~[J Glob Optim09]. Our key ingredients are improved dynamic programming algorithms that depend exponentially on more essential 1-dimensional widths of the problems.



rate research

Read More

In this article, we study a generalized version of the maximum independent set and minimum dominating set problems, namely, the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem on unit disk graphs for a positive integer $d>0$. We first show that the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem belongs to NP-hard class. Next, we propose a simple polynomial-time constant-factor approximation algorithms and PTAS for both the problems.
A unit disk graph is the intersection graph of n congruent disks in the plane. Dominating sets in unit disk graphs are widely studied due to their application in wireless ad-hoc networks. Because the minimum dominating set problem for unit disk graphs is NP-hard, numerous approximation algorithms have been proposed in the literature, including some PTAS. However, since the proposal of a linear-time 5-approximation algorithm in 1995, the lack of efficient algorithms attaining better approximation factors has aroused attention. We introduce a linear-time O(n+m) approximation algorithm that takes the usual adjacency representation of the graph as input and outputs a 44/9-approximation. This approximation factor is also attained by a second algorithm, which takes the geometric representation of the graph as input and runs in O(n log n) time regardless of the number of edges. Additionally, we propose a 43/9-approximation which can be obtained in O(n^2 m) time given only the graphs adjacency representation. It is noteworthy that the dominating sets obtained by our algorithms are also independent sets.
We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth-fragile graph classes, a property that is true for many natural graph classes with sublinear separators. We also provide quasipolynomial-time approximation schemes for these problems in all classes with sublinear separators.
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain the first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
Let $G=(V,E)$ be an undirected graph. We call $D_t subseteq V$ as a total dominating set (TDS) of $G$ if each vertex $v in V$ has a dominator in $D$ other than itself. Here we consider the TDS problem in unit disk graphs, where the objective is to find a minimum cardinality total dominating set for an input graph. We prove that the TDS problem is NP-hard in unit disk graphs. Next, we propose an 8-factor approximation algorithm for the problem. The running time of the proposed approximation algorithm is $O(n log k)$, where $n$ is the number of vertices of the input graph and $k$ is output size. We also show that TDS problem admits a PTAS in unit disk graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا