Do you want to publish a course? Click here

Binding two and three-$alpha$ particles in cold neutron matter

78   0   0.0 ( 0 )
 Added by Wataru Horiuchi
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We elucidate the fate of neighboring two and three-$alpha$ particles in cold neutron matter by focusing on an analogy between such $alpha$ systems and Fermi polarons realized in ultracold atoms. We describe in-medium excitation properties of an $alpha$ particle and neutron-mediated two- and three-$alpha$ interactions using theoretical approaches developed for studies of cold atomic systems. We numerically solve the few-body Schrodinger equation of $alpha$ particles within standard $alpha$ cluster models combined with in-medium properties of $alpha$ particles. We point out that the resultant two-$alpha$ ground state and three-$alpha$ first excited state, which correspond to $^8$Be and the Hoyle state, respectively, known as main components in the triple-$alpha$ reaction, can become bound states in such a many-neutron background although these states are unstable in vacuum. Our results suggest a significance of these in-medium cluster states not only in astrophysical environments such as core-collapsed supernova explosions and neutron star mergers but also in neutron-rich nuclei.



rate research

Read More

The energies of the (eta_c d) and (eta_c 3He) bound states are calculated on the basis of exact three- and four-body AGS equations. For the eta_c N interaction a Yukawa-type potential has been adopted. The calculations are done for a certain range of its strength parameter. The results obtained are quite different from calculations based on the folding model.
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet $P-$wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neutron-star observables. Ab initio theoretical calculations aimed at resolving this issue face unique challenges in the relevant high-density domain, which reaches beyond the saturation density of symmetrical nuclear matter. These issues include uncertainties in the three-nucleon (3N) interaction and in the effects of strong short-range correlations -- and more generally of in-medium modification of nucleonic self-energies and interactions. A survey of existing solutions to the gap equations in the triplet channel shows that the separate or combined impacts of 3N forces, coupled channels, and mass renormalization range from moderate to strong to devastating, thus motivating a detailed analysis of the competing effects. In the present work we track the effects of the 3N force and in-medium modifications in the representative case of the $^3P_2$ channel, based on the Argonne V18 two-nucleon (2N) interaction supplemented by 3N interactions of the Urbana IX family. Sensitivity of the results to the input interaction is clearly demonstrated, while consistency issues arise with respect to the simultaneous treatment of 3N forces and in-medium effects. We consider this pilot study as the first step towards a systematic and comprehensive exploration of coupled-channel $^3P F_2$ pairing using a broad range of 2N and 3N interactions from the current generation of refined semi-phenomenological models and models derived from chiral effective field theory.
176 - Z. Papp , S. Moszkowski 2008
Two body data alone cannot determine the potential uniquely, one needs three-body data as well. A method is presented here which simultaneously fits local or nonlocal potentials to two-body and three-body observables. The interaction of composite particles, due to the Pauli effect and the indistinguishability of the constituent particles, is genuinely nonlocal. As an example, we use a Pauli-correct nonlocal fish-bone type optical model for the $alpha-alpha$ potential and derive the fitting parameters such that it reproduces the two-$alpha$ and three-$alpha$ experimental data.
63 - A. Li 2006
We investigate the composition and the equation of state of the kaon condensed phase in neutrino-free and neutrino-trapped star matter within the framework of the Brueckner-Hartree-Fock approach with three-body forces. We find that neutrino trapping shifts the onset density of kaon condensation to a larger baryon density, and reduces considerably the kaon abundance. As a consequence, when kaons are allowed, the equation of state of neutrino-trapped star matter becomes stiffer than the one of neutrino free matter. The effects of different three-body forces are compared and discussed. Neutrino trapping turns out to weaken the role played by the symmetry energy in determining the composition of stellar matter, and thus reduces the difference between the results obtained by using different three-body forces.
We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8/$overline{rm D8}$ branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا