No Arabic abstract
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet $P-$wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neutron-star observables. Ab initio theoretical calculations aimed at resolving this issue face unique challenges in the relevant high-density domain, which reaches beyond the saturation density of symmetrical nuclear matter. These issues include uncertainties in the three-nucleon (3N) interaction and in the effects of strong short-range correlations -- and more generally of in-medium modification of nucleonic self-energies and interactions. A survey of existing solutions to the gap equations in the triplet channel shows that the separate or combined impacts of 3N forces, coupled channels, and mass renormalization range from moderate to strong to devastating, thus motivating a detailed analysis of the competing effects. In the present work we track the effects of the 3N force and in-medium modifications in the representative case of the $^3P_2$ channel, based on the Argonne V18 two-nucleon (2N) interaction supplemented by 3N interactions of the Urbana IX family. Sensitivity of the results to the input interaction is clearly demonstrated, while consistency issues arise with respect to the simultaneous treatment of 3N forces and in-medium effects. We consider this pilot study as the first step towards a systematic and comprehensive exploration of coupled-channel $^3P F_2$ pairing using a broad range of 2N and 3N interactions from the current generation of refined semi-phenomenological models and models derived from chiral effective field theory.
The detection of gravitational radiation, emitted in the aftermath of the excitation of neutron star quasi-normal modes, has the potential to provide unprecedented access to the properties of matter in the star interior, and shed new light on the dynamics of nuclear interactions at microscopic level. Of great importance, in this context, will be the sensitivity to themodelling of three-nucleon interactions, which are known to play a critical role in the high-density regime. We report the results of a calculation of the frequencies and damping times of the fundamental mode, carried out using the equation of state of Akmal, Pandharipande and Ravenhall as a baseline, and varying the strength of the isoscalar repulsive term the Urbana IX potential within a range consistent with multimessenger astrophysical observations. The results of our analysis indicate that repulsive three-nucleon interactions strongly affect the stiffness of the equation of state, which in turn determines the pattern of the gravitational radiation frequencies, largely independent of the mass of the source. The observational implications are also discussed.
Background: Modern ab initio theory combined with high-quality nucleon-nucleon (NN) and three-nucleon (3N) interactions from chiral effective field theory (EFT) can provide a predictive description of low-energy light-nuclei reactions relevant for astrophysics and fusion-energy applications. However, the high cost of computations has so far impeded a complete analysis of the uncertainty budget of such calculations. Purpose: Starting from NN potentials up to fifth order (N4LO) combined with leading-order 3N forces, we study how the order-by-order convergence of the chiral expansion and confidence intervals for the 3N contact and contact-plus-one-pion-exchange low-energy constants (cE and cD) contribute to the overall uncertainty budget of many-body calculations of neutron-He elastic scattering. Methods: We compute structure and reaction observables for three-, four- and five-nucleon systems within the ab initio frameworks of the no-core shell model an no-core shell model with continuum. Using a small set of design runs, we construct a Gaussian process model (GPM) that acts as a statistical emulator for the theory. With this, we gain insight into how uncertainties in the 3N low-energy constants propagate throughout the calculation and determine the Bayesian posterior distribution of these parameters with Markov-Chain Monte-Carlo.
We study excited-state properties of neutron-rich calcium isotopes based on chiral two- and three-nucleon interactions. We first discuss the details of our many-body framework, investigate convergence properties, and for two-nucleon interactions benchmark against coupled-cluster calculations. We then focus on the spectroscopy of 47-56Ca, finding that with both 3N forces and an extended pfg9/2 valence space, we obtain a good level of agreement with experiment. We also study electromagnetic transitions and find that experimental data are well described by our calculations. In addition, we provide predictions for unexplored properties of neutron-rich calcium isotopes.
Chiral symmetry allows two and three nucleon forces to be treated in a single theoretical framework. We discuss two new features of this research programme at $cO(q^4)$ and the consistency of the overall chiral picture.
We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid critical temperature, the best fit proton singlet superconducting critical temperature, and their associated statistical uncertainties. We find that the neutron triplet critical temperature is likely $2.09^{+4.37}_{-1.41} times 10^{8}$ K and that the proton singlet critical temperature is $7.59^{+2.48}_{-5.81} times 10^{9}$ K. However, we also show that this result only holds if the Vela neutron star is not included in the data set. If Vela is included, the gaps increase significantly to attempt to reproduce Velas lower temperature given its young age. Further including neutron stars believed to have carbon atmospheres increases the neutron critical temperature and decreases the proton critical temperature. Our method demonstrates that continued observations of isolated neutron stars can quantitatively constrain the nature of superfluidity in dense matter.